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1 Introduction

We consider variational integrals of the form,

I(u) =
∫

Ω
f(Du(x))dx, (1.1)

whereΩ ⊂ Rn is a bounded open set,u : Ω → Rm is a mapping belonging
to W 1,2(Ω), Du(x) denotes the gradient matrix ofu at x ∈ Ω, andf is a
function defined on the setMm×n of all realm × n matrices satisfying the
following assumptions:

f is smooth, strongly convex with uniformly bounded second derivatives.

(∗)

We recall thatf is said to be strongly convex if there exists a constantν > 0,
such that for allξ ∈ Mm×n, X ∈ Mm×n, the inequalityf

pi
αpj

β
(X)ξi

αξj
β ≥

ν|ξ|2 holds. Here and in what follows we will be using Einstein’s summation
convention.

We shall consider the regularity of minimizers ofI in W 1,2(Ω). Here
by a minimizer we mean a functionu ∈ W 1,2(Ω) such that for any smooth
functionφ : Ω → Rm compactly supported inΩ the inequalityI(u+φ) ≥
I(u) holds. Whenf satisfies(∗), it is not difficult to see thatu is a minimizer
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of I if and only if u is a weak solution of theEuler − Lagrange equation
of I, i.e.u satisfies (in the sense of distributions)

∂αfpi
α
(Du(x)) = 0, i = 1, · · · , m. (1.2)

A classical result of C.B. Morrey ([Mo]) says that, whenf satisfies(∗)
andn = 2, m ≥ 1, every minimizer ofI(u) of type (1.1) is regular. This is
also the case whenf satisfies(∗) andn ≥ 2, m = 1 by celebrated results
of De Giorgi ([De1]) and Nash ([Na]). The methods used in the proof of
De Giorgi and Nash can not be extended to the casem ≥ 2 as shown by
a counterexample of De Giorgi ([De2]). The first example of a nonsmooth
minimizer for a smooth strongly convex functional of the type (1.1) was
constructed by Něcas in high dimensions (see [Ne]). He considered the
functionu : Rn → Rn2

defined by

uij =
xixj

|x| , (1.3)

and for largen constructed a smooth functionf satisfying(∗) on Mn×n2

for whichu is a minimizer of the corresponding functionalI. Later Něcas,
Hao and Leonardi ([HLN]) were able to modify this construction and make
it work for n ≥ 5. They usedu given by

uij =
xixj

|x| − |x|
n

δij . (1.4)

Important counterexamples to regularity of solutions of elliptic systems
which are not of the form (1.2) can be found in [GM] and [NJS]. For a
comprehensive treatment of regularity questions we refer the reader to [Gi].
Interesting sufficient conditions for regularity are given in [Ko].

The purpose of this paper is to give a counterexample to regularity of
weak solutions of (1.2) in the casen = 3, m = 5. We use exactly the same
u defined by (1.4) and construct a smooth functionf satisfying(∗) such that
u is a minimizer ofI. The main idea of our construction is the following.
Let K = {∇u(x), x ∈ Ω} be the set of gradients ofu. We find a null
LagrangianL (see Definition 2.1 below) such that

∇L(X) = ∇f(X), ∀X ∈ K (1.5)

for a smooth functionf satisfying(∗). Thenu will satisfy theEuler −
Lagrange equation ofI automatically. To find the null Lagrangian we use
the symmetries of the functionu. We will see below that there is, up to a
multiplicative factor, a unique quadratic null Lagrangian onM5×3 which is
invariant under the symmetries of the functionu. It turns out that this null
Lagrangian satisfies a necessary and sufficient condition for the existence
of a strongly convexf satisfying (1.5).
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2 Preliminaries

First we introduce some basic facts about null Lagrangians.

Definition 2.1 (see [Ba1])L : Mm×n → R is a null Lagrangian if for each
smoothu : Rn → Rm,

div ∇L(∇u(x)) = 0. (2.1)

We recall the following classical theorem about null Lagrangians (see
[Da] or [BCO]).

Proposition 1LetL : Mm×n → R, the following conditions are equivalent:
i) L is a null Lagrangian.
ii) L is a linear combination of subdeterminants.
iii) L is rank-one affine, i.e.t → L(A + tB) is affine for eachA ∈ Mm×n

and eachB ∈ Mm×n with rankB = 1.

From now on, letΩ be the unit ball inR3. Consideru = (uij(x)) given
by

uij(x) =
xixj

|x| − |x|
3

δij , i, j = 1, ..., 3.

Then for eachx ∈ Ω, u(x) ∈ {A ∈ M3×3, A = At, trA = 0} ∼= R5. For
eachR ∈ SO(3) we have

u(Rx) = Ru(x)Rt = ρ5(R)u(x),

where we denote byρ2i+1 the unique irreducible representation ofSO(3)
of dimension2i + 1. This notation will be used throughout the paper. We
remark that these representation are of the real type, and therefore for our
purposes we do not have to distinguish between the representations over the
real numbers and the complex numbers. An easy calculation shows that

∇u(Rx) = ρ5(R)∇u(x)Rt = ρ5 ⊗ ρ3(R)∇u(x).

Lemma 2.1 There exists a unique ( up to multiplication by a scalar) qua-
dratic null LagrangianL onM5×3 which is invariant under the above action
of SO(3).

Proof. Consider the tensor spaceT = {aijk ∈ (R3)⊗3|aijk = ajik, aiik =
0}. Clearly we haveT ∼= R15 ∼= M5×3. By the Clebsch-Gordan formula
(see [BD]), we know that

ρ5 ⊗ ρ3 = ρ7 ⊕ ρ5 ⊕ ρ3.

We now identify the quadratic null Lagrangians onM5×3 with Λ2R3 ⊗
Λ2R5 ∼= Hom(Λ2R3, Λ2R5) and consider the representationσ of SO(3)
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on Hom(Λ2R3,Λ2R5) induced byρ3⊗ρ5. By classical group representation
theory (see [BD]) we have

σ = ρ9 ⊕ ρ7 ⊕ ρ5 ⊕ ρ5 ⊕ ρ3 ⊕ ρ1.

Therefore we see there is a unique one dimensional invariant subspace.

3 Constructions

3.1 Construction ofL

Now we calculate explicitly the invariant quadratic null Lagrangian which
will be denoted byL in what follows. (We slightly abuse the notation,
sinceL is only determined up to a multiplicative factor.) Since we have
M5×3 = V7 ⊕V5 ⊕V3, whereVi is thei−dimensional irreducible invariant
subspace. We know from the classical invariant theory (see [We1]) thatL
must be of the following form:

L(A) = α|X|2 + β|Y |2 + γ|Z|2

whereA ∈ M5×3, A = X + Y + Z, with X ∈ V7, Y ∈ V5, Z ∈ V3.
We identifyM5×3 with T = {aijk ∈ (R3)⊗3|aijk = ajik, aiik = 0}

in the obvious way. Now we use a classical procedure to decomposeT into
irreducible subspaces ( see [We1]). We first decomposeT into the trace-
free partT ′ and its orthogonal supplementT3, i.e. T = T ′ ⊕ T3. An easy
calculation shows that the projection onT3 is given byaijk → −1

5δijηk +
3
10δkiηj + 3

10δjkηi with ηk = akii, k = 1, 2, 3. Then we decomposeT ′ by
using symmetrizations. We haveT ′ = T1 ⊕ T2, where the projection onT1
is given by symmetrization, i.e.aijk → 1

3(aijk +ajki +akij); the projection
onT2 is given byaijk → 1

3(aijk + ajik − akji − akij), which corresponds
to the following Young tableau:

We remark that the antisymmetric part of any tensor inT is 0. We now
identify T1 with V7, T2 with V5, T3 with V3.

We now use the condition thatL has to vanish on rank-one matrices.
These matrices correspond to the tensors inT which are of the formaijk =
cijξk, whereC = (cij) is a trace-free symmetric matrix. A direct calculation
of the norms of the projectionsal

ijk of aijk to Tl gives

aijk = a1
ijk + a2

ijk + a3
ijk,
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with

|a1
ijk|2 =

1
3
|C|2|ξ|2 +

2
5
|Cξ|2, |a2

ijk|2 =
2
3
|C|2|ξ|2 − |Cξ|2,

|a3
ijk|2 =

3
5
|Cξ|2.

From this we see that, using the same notation as above,L(A) = α|X|2+
β|Y |2 + γ|Z|2 vanishes on rank one matrices if and only if

α : β : γ = (−2) : 1 : 3.

For our purpose, we will takeα = −2, β = 1, γ = 3 in the following.

3.2 The construction off

We recall thatK = {∇u(x), x ∈ Ω} = {∇u(x), x ∈ S2} ⊂ M5×3, where
u is defined by (1.4), and where we have identified the3 × 3 trace-free
symmetric matrices withR5. A necessary condition for the existence of a
strongly convex functionf satisfying (1.5) is that there existδ0 > 0, such
that

∇L(X) · (Y − X) ≤ −δ0|Y − X|2 ∀X, Y ∈ K. (3.1)

We will see this condition is satisfied.

Lemma 3.1 For anyX = ∇u(x), Y = ∇u(y) ∈ K, wherex, y ∈ S2, we
have

L(∇u(x) − ∇u(y)) ≥ 8|x − y|2.
Proof. First we note that we have the following decomposition for∇u(x) ∈
K, x ∈ S2.

uijk = u1
ijk + u2

ijk + u3
ijk,

where

u1
ijk = −xixjxk +

1
5
(xiδjk + xjδik + xkδij),

u2
ijk = 0,

u3
ijk =

4
5
(xiδjk + xjδik − 2

3
xkδij).

and

|u1
ijk|2 =

2
5
, |u3

ijk|2 =
64
15

.
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Hence L(∇u(x)) ≡ 12 ∀x ∈ S2.
SinceL is quadratic, we have

L(∇u(x) − ∇u(y)) = 2L(∇u(x)) − 2L(∇u(x),∇u(y)),

where we slightly abuse the notation by usingL also for the symmetric
bilinear form corresponding to the quadratic formL.

L(∇u(x),∇u(y)) = −2u1
ijk(x) · u1

ijk(y) + 3u3
ijk(x) · u3

ijk(y)

= −2
(

−xixjxk +
1
5
(xiδjk + xjδki + xkδij)

)
·

(
−yiyjyk +

1
5
(yiδjk + yjδik + ykδij)

)

+3
(

4
5

)2

(xiδjk + xjδki − 2
3
xkδij)

·(yiδjk + yjδik − 2
3
ykδij)

= −2〈x, y〉3 + 14〈x, y〉.
Let t = 〈x, y〉. Then−1 ≤ t ≤ 1, and we have

L(∇u(x) − ∇u(y)) = 2L(∇u(x)) − 2L(∇u(x),∇u(y))
= 2(1 − t)

(−2(1 + t + t2) + 14
)

≥ 16(1 − t)
= 8|x − y|2.

The proof of Lemma 3.1 is finished.

We haveL(X) = 12 for all X ∈ K and therefore Lemma 3.1 gives

∇L(∇u(x)) · (∇u(y) − ∇u(x))
= −L(∇u(x) − ∇u(y))

+L(∇u(x)) + L(∇u(y)) − 2L(∇u(x))
= −L(∇u(x) − ∇u(y))
≤ −8|x − y|2.

Since we have

53
12

|x − y|2 ≤ |X − Y |2 ≤ 20
3

|x − y|2

for X = ∇u(x), Y = ∇u(y), we see that the condition (3.1) is satisfied.
It turns out that (3.1) together with the fact thatL is constant onK is also

sufficient for the existence of a strongly convex function satisfying (1.5). A
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natural attempt to make such an extension would be to take the convex hull of
K and consider a modification of the corresponding Minkowski functional.
However, since the convex hull ofK may not be smooth atK, we need to
slightly modify this construction.

We fixε > 0 (the exact value will be specified later) and for eachX ∈ K,
consider the 10 dimensional ball of radiusrε = ε|∇L(X)| = ε

√
160 passing

throughX centered atX ′ = X−∇L(X)ε. We will denote the ball asBX′,rε .

Lemma 3.2 Whenε is sufficiently small we have

∇L(X)(Ỹ − X) ≤ −1
2
|Ỹ − X|2, (3.2)

for eachX ∈ K and eachỸ ∈ BY ′,rε , whereBY ′,rε is defined above, with
Y being an arbitrary point ofK.

Proof. The inequality

|Ỹ − Y ′|2 ≤ ε2|∇L(Y )|2

gives

∇L(Y ) · (Ỹ − Y ) ≤ − 1
2ε

|Ỹ − Y |2

Hence

∇L(X) · (Ỹ − X) = (∇L(X) − ∇L(Y )) · (Ỹ − Y )
+∇L(Y ) · (Ỹ − Y ) + ∇L(X) · (Y − X)

≤ 10|Y − X||Ỹ − Y | − 1
2ε

|Ỹ − Y |2 − 6
5
|Y − X|2,

and the statement follows easily.

Let S = ∪X∈KBX′,rε . Whenε is small, the boundary ofS is smooth by
elementary results about tubular neighborhoods (see [Hi] or [We2]). Lemma
3.2 implies that (for sufficiently smallε) all the eigenvalues of the second
fundamental form of∂S are negative and bounded above uniformly onK
by a negative constantγ (i.e. the principle curvatureski(X) ≤ γ < 0,∀i
and∀X ∈ K ). Since∂S is smooth, we conclude that∂S is locally strongly
convex at any point ofU ∩ ∂S, whereU is a small neighborhood ofK.

Now takeG to be the convex hull ofS in V7 ⊕ V3. Using Lemma 3.2
and the fact that∂S is smooth and locally strongly convex inU ∩ ∂S, we
infer thatU ∩ ∂G = U ∩ ∂S when the neighborhoodU of K is chosen to
be sufficiently small. Let

F1(X) = min{t ≥ 0, X ∈ tG}, F (X) = 12F 2
1 (X).
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ThenF is smooth and strongly convex inU (see [Ro]), and∇L(X) =
∇F (X) for eachX ∈ K. Let φ be a smooth non-negative mollifier with
support inB1 and let

Fδ = φδ ∗ F,

whereφδ(x) = δ−nφ(x
δ ). Define

Hδ,τ (X) = Fδ + τ |X|2.
Let 0 ≤ η ≤ 1 be a smooth cut-off function satisfyingη = 1 in U ′, and
η = 0 outsideU , whereU ′ is an open neighborhood ofK satisfyingŪ ′ ⊂ U .

Now define

H = (1 − η)Hδ,τ + ηF.

A straightforward calculation shows thatH is a strongly convex function
satisfying(∗) onV7 ⊕V3 whenδ andτ are small enough. Now takef(A) =
H(X + Y ) + |Z|2 to be our final function, whereA ∈ M5×3, A =
X + Y + Z, with X ∈ V7, Y ∈ V5, Z ∈ V3. We know thatf coincide with
F (X + Y ) + |Z|2 in a neighborhood ofK, thus∇L(X) = ∇f(X) for all
X ∈ K holds andf is a smooth function satisfying(∗). This proves the
following theorem:

Theorem 1Let Ω = {x ∈ R3, |x| < 1} and letu: Ω → R5 be defined by

uij = xixj

|x| − |x|
3 δij , i, j = 1, · · · 3, where we identify the3 × 3 symmetric

trace-free matrices withR5. Thenu is a minimizer ofI(u) =
∫

Ω
f(Du(x)),

wheref is the smooth strongly convex function defined above.
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