Calc. Var. 10, 213-221 (2000)
(© Springer-Verlag 2000

A singular minimizer of a smooth strongly convex
functional in three dimensions

Vladimir Sverak, Xiaodong Yan

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received: March 17, 1999 / Accepted: June 11, 1999

1 Introduction

We consider variational integrals of the form,

I(u) = /Q F(Du(x))dz, (1.1)

wheref? C R is abounded open set; {2 — R™ is a mapping belonging
to W2(£2), Du(x) denotes the gradient matrix efatz € (2, andf is a
function defined on the sétr™>™ of all realm x n matrices satisfying the
following assumptions:

f is smooth, strongly convex with uniformly bounded second derivatives

(%)

We recall thaff is said to be strongly convex if there exists a constant0,
such that for al € M™*", X € M™*", the inequalityf ; (X)gggﬂﬁ >
ab'g

v|¢|? holds. Here and in what follows we will be using Einstein’s summation
convention.

We shall consider the regularity of minimizers bin W2(2). Here
by a minimizer we mean a functianc W12(£2) such that for any smooth
function¢: 2 — R™ compactly supported if® the inequalityl (u + ¢) >
I(u) holds. Whery satisfiegx), itis not difficult to see that is a minimizer
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of I if and only if u is a weak solution of th&'uler — Lagrange equation
of I, i.e.u satisfies (in the sense of distributions)

O fpi (Du(z)) = 0, i=1,---,m. (1.2)

A classical result of C.B. Morrey ([Mo]) says that, whérsatisfieq )
andn = 2, m > 1, every minimizer ofl (u) of type (1.1) is regular. This is
also the case whefisatisfies(x) andn > 2, m = 1 by celebrated results
of De Giorgi ([Del]) and Nash ([Na]). The methods used in the proof of
De Giorgi and Nash can not be extended to the ease 2 as shown by
a counterexample of De Giorgi ([De2]). The first example of a nonsmooth
minimizer for a smooth strongly convex functional of the type (1.1) was
constructed by N&as in high dimensions (see [Ne]). He considered the
functionu: R* — R™ defined by

ZTil 5

x|

and for largen constructed a smooth functighsatisfying(x) on A7mx"*

for which « is a minimizer of the corresponding functionalLater N&as,
Hao and Leonardi ([HLN]) were able to modify this construction and make
it work for n > 5. They used: given by

(1.3)

uij =

_wiwy x|

ij = Oij- 1.4
W] e -

Important counterexamples to regularity of solutions of elliptic systems
which are not of the form (1.2) can be found in [GM] and [NJS]. For a
comprehensive treatment of regularity questions we refer the reader to [Gi].
Interesting sufficient conditions for regularity are given in [Ko].

The purpose of this paper is to give a counterexample to regularity of
weak solutions of (1.2) in the case= 3, m = 5. We use exactly the same
u defined by (1.4) and construct a smooth functfsatisfying(x) such that
u is a minimizer of/. The main idea of our construction is the following.
Let K = {Vu(z),z € 2} be the set of gradients of. We find a null
LagrangianL (see Definition 2.1 below) such that

VL(X)=Vf(X), VXeK (1.5)

for a smooth functionf satisfying(x). Thenwu will satisfy the Fuler —
Lagrange equation ofl automatically. To find the null Lagrangian we use
the symmetries of the functiom. We will see below that there is, up to a
multiplicative factor, a unique quadratic null Lagrangianii*3 which is
invariant under the symmetries of the functienlt turns out that this null
Lagrangian satisfies a necessary and sufficient condition for the existence
of a strongly convey satisfying (1.5).
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2 Preliminaries

First we introduce some basic facts about null Lagrangians.

Definition 2.1 (see [Bal])L: M™*™ — R is anull Lagrangian if for each
smoothu: R" — R™,

divVL(Vu(z)) = 0. (2.1)

We recall the following classical theorem about null Lagrangians (see
[Da] or [BCQOY]).

Proposition 1LetL: M™*"™ — R, the following conditions are equivalent:
i) L is a null Lagrangian.

i) L is a linear combination of subdeterminants.

i) L is rank-one affine, i.e. — L(A + tB) is affine for eachd € pM™*"
and eachB € M™*™ with rank B = 1.

From now on, let? be the unit ball inR3. Consider: = (u;;(z)) given
by

Then for eachr € 2,u(z) € {A € M33 A = Al trA = 0} = R5. For
eachR € SO(3) we have

u(Rz) = Ru(x)R' = ps(R)u(x),

8ij, ij=1,..3.

where we denote by,; ., the unique irreducible representation$(3)

of dimension2: + 1. This notation will be used throughout the paper. We
remark that these representation are of the real type, and therefore for our
purposes we do not have to distinguish between the representations over the
real numbers and the complex numbers. An easy calculation shows that

Vu(Rz) = ps(R)Vu(z)R' = ps @ p3(R)Vu(zx).

Lemma 2.1 There exists a unique ( up to multiplication by a scalar) qua-
dratic null LagrangianZ on M >*3 which is invariant under the above action
of SO(3).

Proof. Consider the tensor spage= {a;;x € (R*)®3|ajjr = ajik, aiir =
0}. Clearly we havel’ = R!> = )®*3, By the Clebsch-Gordan formula
(see [BD]), we know that

p5 @ p3 = p1 S p5 D ps3.

We now identify the quadratic null Lagrangians &f°*3 with A’R? ®
A’R5 = Hom(A?R3, A2R®) and consider the representatiorof SO(3)
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onHom(A?R?3, A2R?) induced by3®ps. By classical group representation
theory (see [BD]) we have

o =p9Dp7®psDpsDp3Dpr1.
Therefore we see there is a unique one dimensional invariant subspace.

3 Constructions
3.1 Construction of.

Now we calculate explicitly the invariant quadratic null Lagrangian which
will be denoted byL in what follows. (We slightly abuse the notation,
since L is only determined up to a multiplicative factor.) Since we have
M>*3 = V7 @ Vs & Vs, whereV is thei—dimensional irreducible invariant
subspace. We know from the classical invariant theory (see [Wel]Yithat
must be of the following form:

L(A) = o|X]* + BIY]* + 2]

whered ¢ M3, A=X4+Y +Z withX eV, Y eV, Zcls.

We identifyM5X3 with T' = {aijk S (R3)®3\aijk = Qjik, Aisk = 0}
in the obvious way. Now we use a classical procedure to decompoge
irreducible subspaces ( see [Wel]). We first decomposato the trace-
free part?” and its orthogonal supplemeny, i.e. T = T’ ¢ T3. An easy
calculation shows that the projection @k is given bya;;;, — —%@-jnk +
B61kim; + 50km With my, = ak, k = 1,2,3. Then we decomposg’ by
using symmetrizations. We ha{ié¢ = T ¢ T, where the projection oif
is given by symmetrization, i.e;;;, — %(azjk +aji; + ag;j); the projection
onTy is given bya,;;, — %(aijk + ajir — akji — agij), Which corresponds
to the following Young tableau:

We remark that the antisymmetric part of any tensofiis 0. We now
identify T7 with V7, T with Vs, T3 with V3.

We now use the condition thdt has to vanish on rank-one matrices.
These matrices correspond to the tensofs which are of the forna;;;, =
cii&k, WhereC' = (¢;;) is atrace-free symmetric matrix. A direct calculation
of the norms of the projectiongjk of a;j, to Tj gives

1 2 3
Ajjk = Qjjp + Qi + Qs
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with
all? = SIOPIEP + ZICEP,  ladul? = SICPIeP —|CeP
gkl T 3 5 ) gkl — 3 )
: 3
’a?jk‘z = 5\0512-

From this we see that, using the same notation as ahove, = o| X |?+
BlY'|2 + ~|Z|* vanishes on rank one matrices if and only if

a:f:y=(-2):1:3.

For our purpose, we will take = —2, 3 = 1,y = 3 in the following.

3.2 The construction of

We recall thatk = {Vu(x),r € 2} = {Vu(z),z € S?} C M>*3, where
u is defined by (1.4), and where we have identified 3he 3 trace-free
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symmetric matrices witlR>. A necessary condition for the existence of a

strongly convex functiory satisfying (1.5) is that there exigf > 0, such
that

VLX) (Y - X) < =&Y —X* VX, YeK. (3.1)
We will see this condition is satisfied.

Lemma 3.1 Forany X = Vu(z),Y = Vu(y) € K, wherez,y € S?, we
have

L(Vu(x) = Vu(y)) > 8|z — y/*.

Proof. Firstwe note that we have the following decompositionVar(z) €
K,z e 5%

1 2 3
Uijk = Uij + Ui + Wik,

where
u}jk = —xirT) + %(l‘i&jk + x0ik + Tx0ij),
U?jk =0,
udy, = g(xiéjk + 250 — %xk@j).

and

64
1 2 _ 2
|u7,]k| - 57 ‘ z]k’ 15
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Hence L(Vu(z)) =12  Vzec S
SincelL is quadratic, we have

L(Vu(z) = Vu(y)) = 2L(Vu(z)) = 2L(Vu(z), Vu(y)),

where we slightly abuse the notation by usihgalso for the symmetric
bilinear form corresponding to the quadratic fofm

L(Vu(z), Vu(y)) = —2ujj(w) - uijp(y) + 3uie () - uj(y)

1

1
—(Yidjk + y;0ik + yk%))

<_yiyjyk + 5

4\ 2
+3 (5 (zi6jk + j0k; — gxk(sij>

2
gykﬁsij)

(Yibjk + yj0ik —
= _2<xay>3 + 14<$,y>
Lett = (z,y). Then—1 < ¢ < 1, and we have
L(Vu(z) = Vu(y)) = 2L(Vu(z)) — 2L(Vu(z), Vu(y))
=2(1—t) (-2(1+t+1*) + 14)
> 16(1 —t)
= 8|z — y|*.
The proof of Lemma 3.1 is finished.

We haveL(X) = 12 for all X € K and therefore Lemma 3.1 gives

L(VU(@“) Vu(y))
+L(Vu(z)) + L(Vu(y)) — 2L(Vu(x))
Z—L(VU( ) — Vu(y))
—8lz —y|*.

Since we have
53 9 5 20 9
— |z — <|I X =-Y|"< =z —
it —yl" < |© < 3\1’ Yl

for X = Vu(z),Y = Vu(y), we see that the condition (3.1) is satisfied.
It turns out that (3.1) together with the fact tHais constant ok is also
sufficient for the existence of a strongly convex function satisfying (1.5). A
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natural attempt to make such an extension would be to take the convex hull of
K and consider a modification of the corresponding Minkowski functional.
However, since the convex hull éf may not be smooth &, we need to
slightly modify this construction.

We fixe > 0 (the exact value will be specified later) and for eaCke K,
consider the 10 dimensional ball of radius= ¢|V L(X)| = ¢1/160 passing
throughX centeredak’ = X —VL(X)e. We willdenote the ballaBx ...

Lemma 3.2 Wherne is sufficiently small we have
- 1 -~
VLX)(Y - X) < —5|¥ - X%, (3.2)

for eachX € K and eachy € By ., whereBy- ,._is defined above, with
Y being an arbitrary point ofi.

Proof. The inequality
Y —Y')? < VL(Y)]?
gives
VL) (Y —Y) < 72l€|f/ _yP
Hence

VL(X)- (Y = X) = (VL(X) = VL)) - (Y = Y)
+VLY)- (Y = Y)+ VLX) - (Y - X)

. 1 - 6
<10|Y - X||Y - Y| - 2—|Y—Y\2 — 5|Y—X|2,
€

and the statement follows easily.

LetS = Uxex Bx .. Whene is small, the boundary & is smooth by
elementary results about tubular neighborhoods (see [Hi] or [We2]). Lemma
3.2 implies that (for sufficiently smad) all the eigenvalues of the second
fundamental form ob.S are negative and bounded above uniformlyfon
by a negative constant (i.e. the principle curvaturek;(X) < v < 0, Vi
andvX € K). Sinceds is smooth, we conclude thas is locally strongly
convex at any point o/ N 9.5, whereU is a small neighborhood df .

Now take(G to be the convex hull of' in V7 & V3. Using Lemma 3.2
and the fact thad.S is smooth and locally strongly convex ihn 95, we
infer thatU N 0G = U N 05 when the neighborhood of K is chosen to
be sufficiently small. Let

Fi(X)=min{t > 0,X €tG}, F(X)=12F}X).
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Then F is smooth and strongly convex iii (see [Ro]), andVL(X) =
VF(X) for eachX € K. Let ¢ be a smooth non-negative mollifier with
support inB; and let

Fs = ¢s* F,
wheregs(r) = 07" ¢(5). Define
Hs,(X) = F5 +7|X|2.

Let0 < n < 1 be a smooth cut-off function satisfying= 1 in U’, and
n = O outsidel/, wherelJ’ is an open neighborhood &f satisfyingl’ c U.
Now define

H = (1 —U)H(S,T +nk.

A straightforward calculation shows that is a strongly convex function
satisfying(x) onV; & V3 whené andr are small enough. Now tak A) =
H(X +Y) + |Z|? to be our final function, wherel € M5*3 A =
X+Y+Z withX € V7,Y € V5, Z € V3. We know thatf coincide with
F(X +Y) +|Z]?in aneighborhood of, thusVL(X) = V£(X) for all
X € K holds andf is a smooth function satisfyingk). This proves the
following theorem:

Theorem 1Letf? = {z € R3, |z| < 1} and letu: £2 — R be defined by
T |§J5ij, 1,7 = 1,---3, where we identify thg x 3 symmetric

]

'LLij =

trace-free matrices witR®. Thenu is a minimizer of (u) = / f(Du(x)),
0

wheref is the smooth strongly convex function defined above.
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