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My research area is nonlinear partial di¤erential equations with an emphasis on regularity issues
and pattern formation.

1 Recent past work

1.0.1 Regularity problem from nonlinear elasticity

In [12, 76], We study the maximal smoothness for stationary states of the following variational
integrals

(1.1) I(u) =

Z



 (ru(x)) dx:

Here 
 � R2 is a smooth bounded domain. u : 
 �! R2 and 
 is a quasiconvex function satisfying

 =1 when detru < 0:

For domain variations of the form u" (x) = u (x+ "' (x)) for ' 2 C1c
�

;R2

�
: The �rst variation

in " gives the equilibrium equations

(1.2)
�
�
�k� + uixk

@


@P i�
(ru)

�
x�

= 0 in D
0
(
)

for 1 � k � 2:

In [76],we show that if u is a weak solution of (1:2) and if u 2W 2;2 \C1; then detru is strictly
positive in 
 and u is smooth provided 
 is smooth. We also present an example showing that the
above result fails if we only assume u 2W 2;r \ C1 for some r < 2:

In [12], we study an example used in [10, 76] and prove that this weak solution of (1:2) is a
global minimizer in a large subset of all test functions. This is the �rst step in showing that certain
special weak solutions to the equilibrium equations might be a global minimizer.

1.0.2 Sharp integral inequalities for harmonic functions

In [39], we consider the variational problem for 1 < p <1

(1.3) c
np
n�1
n;p = sup

(Z
Rn+
jPf j

np
n�1dx : jf jLp(Rn�1) = 1

)

with Pf(x) =
R
Rn�1 P (x; �)f (�) d� is the Poisson integral of f: We prove existence of maximizers

and regularity properties of critical points. It was shown that all critical points are smooth, radially
symmetric with respect to a point and strictly decreasing along radial direction. For special values
p = 2n

n�1 and p =
2(n�1)
n�2 ; exact forms of critical points are characterized.

In [40], we study the extension of the above problem to the case of compact manifold with
boundary and prove similar properties for maximizers and critical points under suitable assump-
tions.
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1.0.3 Existence and uniqueness of vortexless solutions for Chern-Simons-Higgs en-
ergy.

Let 
 � R2 be a bounded simply connected domain, rA = r� iA where A 2 R2 and u : 
! C:
In joint work with D. Spirn [63, 64], we consider the system of coupled elliptic PDE�s:

��
2
"

4

jcurlA� hexj2

juj4 u = r2Au+
1

"2
u
�
1� juj2

� �
3juj2 � 1

�
(1.4)

0 = ��
2
"

4
curl

�
curlA� hex

juj2

�
+ jA(u):(1.5)

Our main concern is existence and uniqueness of vortexless solutions to (1:4)� (1:5) in nonself-
dual case " 6= �": In [63] we prove that for any given "; �; hex; there exists a solution pair (u;A)
of (1.4), (1.5). If �" ! 0 satis�es �" � e�jlog "j

�

for any 0 < � < 1. there exists a critical �eld
hc1 =

2jlog "j
�2"

such that for hex � hc1 the solution we obtained is vortexless. And for hex > hc1 ; our
solution must have a vortex. Moreover, we [64] prove the existence of stable vortexless solutions to
(1.4)-(1.5) for hex � C"�� and lim sup" �" < 1. Under the additional assumption that �" � "

1
9 ;

the stable vortexless solution obtained is unique among its class.

1.0.4 Higher order elliptic system

In [6, 7, 77], We study positive solutions for higher order elliptic system

(1.6)
�
(��)m u = jxja vp
(��)m v = jxjb uq in RN :

For a = b = 0, we prove [77] there are no radial positive solutions if 1
p+1 +

1
q+1 > 1 � 2m

N and
for general case [7] there are no positive solutions to the system under the additional assumption

that max
�
2(p+1)
pq�1 ;

2(q+1)
pq�1

�
� N�2m�1

m : In particular, if N = 2m+ 1 or 2m+ 2; there are no positive

solutions if 1
p+1 +

1
q+1 > 1�

2m
N :

For a � 0; b � 0, we [6] prove there are no positive solutions with slow decay rates to higher

order elliptic system (1:6) if p � 1; q � 1; (p; q) 6= (1; 1) satis�es
1+ a

N
p+1 +

1+ b
N

q+1 > 1 � 2m
N and

max
�
2m(p+1)+a+bp

pq�1 ; 2m(q+1)+aq+bpq�1

�
> N � 2m � 1: Moreover, if N = 2m + 1 or N = 2m + 2; this

system admits no positive solutions with slow decay rates if p � 1; q � 1; (p; q) 6= (1; 1) satis�es
1
p+1 +

1
q+1 > 1�

2m
N :

1.0.5 Uniqueness of one dimensional Néel wall pro�les

In joint work with Muratov [57], we prove uniqueness (up to translation) of monotone solutions of
the following nonlocal equation

��xx + cos � (sin � � h) +
�

2
cos �

�
� d2

dx2

�1=2
sin � = 0
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subject to boundary constraints at in�nity. Here
�
� d2

dx2

�1=2
represents the linear operator whose

Fourier symbol is jkj : This equation arises as the Euler Lagrange equation of the one dimensional
reduced magnetic thin �lm energy. This result corresponds to uniqueness of one-dimensional Néel
wall pro�les. We also obtain some uniform estimates for general one-dimensional domain wall
pro�les.

1.0.6 Stability of a dislocation structure on low angle planar grain boundaries

Low angle grain boundaries can be modeled as arrays of line defects (dislocations) in crystalline
materials. The classical continuum models for energetics and dynamics of curved grain boundaries
are mainly based on those with equilibrium dislocation structures without the long-range elastic
interaction, leading to a capillary force proportional to the local curvature of the grain boundary.
The new continuum model recently derived by Zhu and Xiang [82] incorporates both the long-
range dislocation interaction energy and the local dislocation line energy, and enables the study
of low angle grain boundaries with non-equilibrium dislocation structures that involves the long-
range elastic interaction. Using this new energy formulation, Xiang and PI ([75]) proved that the
orthogonal network of two arrays of screw dislocations on a planar twist low angle grain boundary
is always stable subject to both perturbations of the constituent dislocations within the grain
boundary and the perturbations of the grain boundary itself.

1.0.7 Brezis-Nirenberg problem for fractional elliptic operators

In joint work with Chen and Montenegro [18], we study the existence and nonexistence of positive
viscosity solutions of the following nonlocal Brezis-Nirenberg problem

(1.7)

(
(�L)su = u

n+2s
n�2s + �u in 
;

u = 0 on @


where (�L)s denotes the fractional power of �div (A (x)r), 0 < s < 1; n > 2s and � is real
parameter. Assuming A(x) � A(x0) for all x 2 
 and A(x) � A(x0) + jx� x0j�In near some point
x0 2 
, we prove existence theorems for any � 2 (0; �1;s(�L)), where �1;s(�L) denotes the �rst
Dirichlet eigenvalue of (�L)s. Our existence result holds true for � > 2s and n � 4s in the interior
case (x0 2 
) and for � > 2s(n�2s)

n�4s and n > 4s in the boundary case (x0 2 @
). Nonexistence for
star-shaped domains is obtained for any � � 0.

1.0.8 Layer solutions for a one dimensional nonlocal model of Ginzburg-Landau type

In joint work with Chen and Muratov [19], we study a nonlocal model of Ginzburg-Landau type
that gives rise to an equation involving a mixture of the Laplacian and half-Laplacian. Our focus
is on one-dimensional transition layer pro�les that connect the two distinct homogeneous phases.
We �rst introduce a renormalized one-dimensional energy that is free from a logarithmic divergence
due to the failure of the Gagliardo norm to be �nite on smooth pro�les that asymptote to di¤erent
limits at in�nity. We then prove existence, uniqueness, monotonicity and regularity of minimizers
in a suitable class. Lastly, we consider the singular limit in which the coe¢ cient in front of the
Laplacian vanishes and prove convergence of the obtained minimizer to the solutions of the fractional
Allen-Cahn equation.
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1.1 A one dimensional nonlocal model of Ginzburg-Landau type with periodic

translation invariance.

The proof of existence, monotonicity and uniqueness of minimizer in [19] relies on the fact that the
renormalized one-dimensional energy is translation invariant. In joint work with Chen and Muratov
[20], we consider minimization of the following nonlocal energy

J (u) =

Z
R

��u0��2 + Z
R
(2 + sinx)W (u) dx

+

Z
R

Z
R

"
(u (x)� u (y))2

(x� y)2
� (� (x)� � (y))

2

(x� y)2

#
dxdy(1.8)

in the set
A =

�
u 2 H1

loc (R) : u� � 2 H1 (R)
	
:

Here � (x) 2 C1 (R) is a given function satisfying j�j � 1; � (x) = 1 for x � 1; � = �1 for
x � �1: W (u) is a double well potential satis�es W (u) > 0 if u 6= �1; W (�1) = W 0 (�1) = 0
and W 00 (�1) > 0: For the new model (1:8) with only periodic translation invariance, our previous
argument fails and we need to seek new method. The main di¢ culty to prove existence of minimizer
of (1:8) lies in two parts. Firstly, since � =2 H 1

2 (R) ; it is not a priorily clear that J (u) is bounded
from below on A: Secondly, the energy bound does not necessrily imply the boundedness of u in a
suitable sobolev space in general, therefore we can not apply direct method to yield a minimizer.
To show J is bounded from below on A; we divide the regions where u is close to �1 and where
u is away from �1: By carefully matching contributions from each region, all potential negative
in�nite energy is canceled out. To prove existence of minimizer, our main idea is as follows.
Given an arbitrary minimizing sequence fung, our will replace this sequence by another sequence
fungconstructed via re�ecting nagative parts of un outside suitable regions. Taking into account of
our energy contribution estimates from lower bound argument, we can carefully choose the region
where we do the re�ection on un so that energy J (un) di¤ers slightly from J (un) : The sequence
fung satis�es jun (x) + sgn(x)j � c > 0 outside a uniformly bounded interval. For such a sequence,
boundedness of energy implies boundedness of un�� in H1 (R) : From this and lower semicontinuity
argument, we yield a limit function which attains minimum of J (u) in A:

Our main result is the following existence and regularity theorem.

Theorem 1 There exists a minimizer u0 of J (u) in A. Moreover, u0 2 C2;
1
2 (R) satis�es Euler-

Lagrange equation

�u000 � (2 + sinx)W 0(u0) + 2�

�
� d2

dx2

� 1
2

u0 = 0:

Here we understand the fractional operator in the following sense�
� d2

dx2

� 1
2

u0 (x) = lim
"!0

1

�

Z
jx�yj��

(u0 (x)� u0 (y))
(x� y)2

dy:

.
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2 Future research

2.1 Low angle grain boundaries and dislocation climb model.

2.1.1 Continuum models for low angle grain boundaries

A grain boundary is the interface where two single crystals of di¤erent orientation join in such a
manner that the material is continuous across the boundary. Grain boundaries are a main feature
of crystalline materials. They play an important role in determining the properties of materials
such as creeping, weld cracking, electromigration resistance.

Dislocations are line defects in crystal structure. There are two main types of dislocations: edge
and screw. An edge dislocation is a defect where an extra half plane of atoms is introduced (or
removed) half way through the crystal. A screw dislocation corresponds to a rotation with respect
to an axis which is perpendicular to the boundary plane. For edge dislocations, Burgers vector is
parallel, while for screw dislocations, Burgers vector is perpendicular. A grain boundary consists
of entirely of screw dislocations is called twist boundary and boundaries consisting entirely of edge
dislocations are called tilt boundaries. Most of the grain boundaries in real materials consist of a
network of both edge and screw dislocations.

We often separate grain boundaries by the extent of the misorientation between the two grains.
Low angle grain boundaries (LAGBs) are those with a misorientation less than about 15 degrees.
Such grain boundaries have relatively simple structure, their properties and structure are a func-
tion of the misorientation. In contrast the properties of high angle grain boundaries (HAGBs)
whose misorientation is greater than about 15 degrees are normally found to be independent of the
misorientation.

Under various forces acting on grain boundaries, the grain boundaries move and microstructure
evolves. Grain boundary motion is the dominant factor for microstructural evolution process of
polycrystalline materials such as grain growth, recrystallization. Due to the strong correlations
among structure, energetics and dynamics of the grain boundaries, theoretical understanding of
grain boundary migration is quite challenging. The classical model of low angle grain boundaries
[41, 60, 65]. was derived for equilibrium planar grain boundaries consisting of regular arrays of
straight dislocations and the dislocation structure is determined by Frank�s formula [29, 41, 47,
60, 65]. The available continuum framework for dynamics of grain boundaries is based on the
assumption that the capillary force is proportional to the curvature of the grain boundary. However,
experiments and simulations [15, 16, 29, 42, 46, 47, 48, 49, 50, 51, 66, 68, 70] show that the migration
on nonplanar low angle grain boundaries does not always follow Read-Shockley formula, its mobility
strongly depends on the grain boundary structure.

Recently Zhu and Xiang [82] derived a continuum model for dislocation structure on low an-
gle grain boundaries that are allowed to be nonplanar or nonequilibrium. Following the idea of a
coarse-grained disregistry function (CGDF) introduced by Xiang [71, 81], they introduced a scalar
dislocation density potential function on a grain boundary surface to describe the orientation de-
pendent continuous distribution of dislocations with same Burgers vector. More precisely, consider
a surface S consisting of dislocations with same Burgers vector b, the dislocation density potential
function � is a scalar function de�ned on S such that the constituent dislocations are given by its
level set � = j: Under this de�nition, the local dislocation line direction is represented by

t =
rS� � n
krS�k
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and the inter-dislocation distance on S

D =
1

krS�k
:

Here n is the unit normal vector of S and rSn =r� � (n �r�)n is the surface gradient of � on
S: We consider J dislocation arrays on a low angle grain boundary S with Burgers vector b(j);
j = 1; � � �J: These arrays of dislocations are represented by dislocation density potential functions
�j ; j = 1; � � � ; J: The continuum formulation of elastic energy of these dislocation arrays on S is
given by

ES (�; S) = Elong + Elocal;

where the long-range interaction energy

Elong =
1

2

JX
i=1

JX
j=1

Z
dSx

Z
dSy

"
� �

2�

(rSx�i (x)� n (x))�
�
rSy�j (y)� n (y)

�
�
�
b(i) � b(j)

�
kx� yk

+
�

4�

�
rSx�i (x)� n (x) � b(i)

� �
rSy�j (y)� n (y) � b(j)

�
kx� yk

+
�

4� (1� �)

�
rSx�i (x)� n (x)� b(i)

�
� rx 
rx kx� yk �

�
rSy�j (y)� n (y)� b(j)

��
:

and the local dislocation line energy

Elocal =
JX
i=1

Z
S

�
�
b(i)
�2

4� (1� �)

"
1� �

�
rSx�i (x)� n (x) � b(i)

�2�
b(i)
�2 krs�i (x)k2

#
krS�i (x)k log

1

rg krS�i (x)k
dSx:

Here b(i) =


b(i)

 and rg is a parameter constant proportional to the dislocation core radius.

The energy Elong represents the energy due to the long-range interaction of dislocations. The
energy Elocal is the local dislocation line energy. The dislocation line energy Elocal dominates for
equilibrium low angle grain boundaries (i.e. those satisfying Frank�s formula); whereas both the
long-range dislocation interactions and the local dislocation line energy play essential roles when
the low angle grain boundaries are in nonequilibrium.

Under this formulation, considering the equilibrium state of the grain boundary S consisting of
J dislocation arrays, the following equations hold:

�E

�r
= �f totalS � n =0 when �r = n�r(2.1)

�E

��j
= f

(j)
S �

rS�j

rS�j

 = 0; j = 1; 2 � � �J:
The �rst one is the equilibrium with respect to the evolution of grain boundary S; the second
one gives the equilibrium state with respect to the motion of the constituent dislocations on a
�xed surface S: Here f totalS is the total force on the grain boundary S and f (j)S is the force on the

j-th dislocation array which can be written as f (j)S =
�
f (0)
�(j)

+ f
(j)
lt + f

(j)
p : The long-range Peach-

Koehler force
�
f (0)
�(j)

comes from variation of the long-range energy Elong with respect to change
of dislocation structure on S. The variation of the local dislocation line energy Elocal with respect
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to � gives two local forces f (j)lt and f (j)p : The force f (j)lt is the local dislocation line tension force and

f
(j)
p is the local force in the direction normal to the local constituent dislocation.
Under this continuum framework, an orthogonal network of two equidistant straight arrays of

screw dislocations on the twist boundary is represented by J = 2; �1 (x; y) =
y
D ; �2 (x; y) = �

x
D :

HereD = b
� is the interdislocation distance between two dislocation arrays sharing the same Burgers

vector. Direct calculation show the long-range energy Elong vanishes and the local dislocation line
energy Elocal =

R
S 
dS; where


 =
�b

2�
� log

b

rg�
:

This recovers the classical result on energy formula for a planar low angle twist boundary in discrete
dislocation model [41, 60].

It is easy to check that the aforementioned �i and S is an equilibrium point of (2:1) : In a joint
work with Xiang [75], PI used this continuum model and studied local stability of such orthogonal
network of equidistant straight arrays on a planar grain boundary. Their work shows the second
variation of the elastic energy with respect to the change of the grain boundary S and the change of
dislocation structure on S are positive de�nite, which implies the local stability of such orthogonal
network of dislocation array on planar grain boundaries.

For nonplanar static grain boundaries, �nding the dislocation structure is not an easy task.
Under this continuum framework, the motion of the grain boundary and evolution of the dislocation
structure on the grain boundary is described by

�jt = �mj
�E

��j
= �mj

 
f
(j)
S �

rS�j

rS�j


!

j = 1; 2; � � �J;(2.2)

vn = �mn
�E

�r
= mn

JX
j=1



rS�j

 f (j)S � n;(2.3)

where mj > 0 are mobility constants.
This continuum framework is general and applies to any dislocation arrays in three dimensions

and includes both the long-range and short-range interaction between constituent dislocations.
Based on this framework, Zhang, Gu and Xiang [79] established a continuum model to compute
the energy of low angle grain boundaries for any given degree of freedom (arbitrary rotation axis,
rotation angle and boundary plane orientation). Another application of this continuum framework
is presented in [80]. They considered the problem where one cylindrical grain is embedded in
another grain with arbitrary cross-section shape. The inner grain has a misorientation angle �
relative to the outer grain and the rotation axis is parallel to the cylindrical axis. Assuming the
cross-section curve of the grain boundary � is in the xy�plane and the rotation axis is in z direction.
Expressing the closed curved grain boundary � in polar coordinates (R;�) ; the migration of � and
evolution of dislocations on � can be written as a two dimensional problem

d�(j)

dt
= �Md

0@ JX
j=1

�(j)q
R2 + (R0)2

f
(j)
long �T

1A0 �Mt
@


@�(j)
�Ma

 
�(j)���(j)�� f (j)app �T

!0
;(2.4)

vn = Md

JX
j=1

�(j)PJ
k=1 � (k)

f
(j)
total � n+Mbp:(2.5)
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Here 
 is the grain boundary energy density, f (j)long , f
(j)
app and f

(j)
total are the forces on the dislocation

with Burgers vector b(j) due to long-range interaction between dislocations, the applied stress �eld
and the total force respectively. Md is mobility of the dislocations and Mb is mobility associated
with driving force due to the di¤erence between the bulk energy densities of the two grains denoted
by p. Mt and Ma are mobilities associated with the driving forces of the local energy and applied
stress, respectively. Their model can be considered as a generalization of Cahn-Taylor model [15]
by incorporating detailed formulas of the driving forces in the normal and tangential direction
that depend on constituent dislocations, Burgers vectors and the grain boundary shape and shape
change of the grain boundaries.

We propose to work on the following questions concerning the motion of grain boundaries and
dislocations.

A1. Short time existence for initial value problem of equations (2:2)� (2:3) and (2:4)� (2:5) :

One of the �rst question we ask is the well posedness. Given an initial grain boundary
S (u; v; 0) = S0 (u; v) ; �i (u; v; 0) = �i (u; v) ; i = 1; � � � ; J: �i satis�es Frank�s formula. Do we
always have a unique solution S (u; v; t) and �i (u; v; t) for (2:2)� (2:3) (respectively (2:4)� (2:5))
for t 2 [0; T ] for some T?

The natural approach would be to formulate an implicit function theorem in a suitable space.
Our initial step would be to calculate the linearization operator of the right hand side and check
invertibility in a suitable function space. Due to the nonlocal feature of our energy, this is not so
obvious. We expect to look into ideas of proof of local existence for harmonic heat �ow problems. We
remark that short time existence and uniqueness result as well as level set approach for a di¤erent
dislocation dynamics have been addressed in [4]. Their model is a non-local eikonal equation on
the characteristic function for the dislocation which is based on the model proposed by Rodney, Le
Bouar and Finel [62].

A2. Level set formulation of equations (2:2)� (2:3) and (2:4)� (2:5) :

To facilitate numerical simulations of dynamics of migration of grain boundaries, our next goal
is to write the equation (2:2) � (2:3) (respectively (2:4) � (2:5)) into a level set formulation. The
main idea of the level set method is to represent the moving interface � (t) (grain boundary S (t)
in our case) as the zero level set of a Lipshitz continuous function � (x;t). The motion of � (t) can
be written as an evolution equation for � as

�t + V kr�k= 0 given � (x;t) = 0

where V represents the interface propagation speed. We expect to follow some ideas of level set
formulation for some geometric evolution problems [28], which relies on coarea formula and proper
identi�cation on evolution speed of level surface.

A3. Self-similar solution to equation (2:2)� (2:3) and (2:4)� (2:5) :
A further question to investigate next is to look into possible self-similar solutions to equation
(2:2) : By doing a dimensional analysis, we shall look for suitable scaling laws which will give
us idea on how a self-similar solution look like. Our equations will be ode system in integral
form, we might need to look into integral type odes for some ideas. New cystal image analysis
recently developed in [78] may help us gain some better idea on identi�cation of dislocations.
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A4. Investigate other related models based on Zhu and Xiang�s framework.

Zhu and Xiang�s model has been generalized to three dimensions [83]. In this case, a pair of
dislocation density potential functions (DDPFs) are introduced for each active slip system. The
contour surfaces of DDPF ' describe the slip plane distribution and the other DDPF  identi�es
the density distribution of dislocation curves on the slip plane. In this formulation, the intersection
of contour lines of integer multiples of the length of the Burgers vector of the two DDPFs are the
locations of the dislocations. The plastic �ow rule is described by evolution equations of DDPFs.
Can we ask similar questions for this generalized model?

2.1.2 Dislocation climb model

Dislocation climb plays important roles in the plastic deformation of crystals at high temperatures
[41]. Climb process is driven by the climb component of the Peach-koehler force on the dislocations
and dislocations change slip planes by absorbing and/or emitting vacancies during the climb process.
Many of the past works on dislocation climb dynamics [5, 8, 9, 22, 34, 38, 45, 55, 72, 73] were based
on vacancy di¤usion in the bulk and often Dirichlet boundary condition was adopted for the vacancy
di¤usion in the bulk. In those models, vacancy concentration along dislocation cores were assumed
to be in equilibrium and climb velocity formulas were mainly expressed in terms of mobility law for
a single, straight edge dislocation. (see [37] for climb velocity for curved dislocations and multiple
dislocations in three dimensions) On the other hand, both pipe di¤usion and absorption/emission
of vacancies at the jogs on the dislocations play essential roles in the dislocation climb process.

Very few references in the literature have attempted to incorporate pipe di¤usion and jog dy-
namics. For example, vacancy pipe di¤usion was included in a three dimensional discrete dislocation
dynamics model in [30] but vacancy di¤usion in the bulk is neglected. Two limit cases associated
with vacancy pipe di¤usion were discussed in [22]. A multi-scale approach was proposed in [33].

Recently, Xiang et al [58] developed a mesoscopic dislocation dynamics model for vacancy
assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Their
model incorporated four microscopic mechanism involved in the dislocation climb process: i) bulk
di¤usion of vacancies, ii) vacancy exchange dynamics between bulk and dislocation core, iii) vacancy
attachment-detachment kinetics at jogs and iv) vacancy pipe di¤usion along the dislocation core.
Under their formulation, the continuous spatial and time domains in consideration is R3 � [0;1) ;
the dislocation is a jogged straight line nominally parallel to z�axis with core radius rd and Burgers
vector b in the positive x axis. Let cv (x; y; z; t) denote the vacancy concentration in the bulk at
time t; cc (z; t) denote the vacancy concentration in the pipe. The vacancy bulk di¤usion equation
is 8><>:

ct = Dv�c

� @c
@n =

1
l�
(c� cd)

���
r=rd

c = c1jr=r1

;

and climb velocity at any point on the dislocation is given by

vcl =
2�rdDv
bl�

�
1

2�rd

Z
r=rd

c dl � cd
�
+Dcb

d2ccd
ds2

=
1

b

Z
r=rd

j � n dl +Dcb
d2ccd
ds2

:
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Here l� in the Robin boundary condition is a characteristic length that represents di¤erence between
the barrier for the vacancies hopping into the dislocation core from the bulk and that for the
vacancy bulk di¤usion. r1 is the outer cuto¤ for the distance to the dislocation. cd and ccd are the
average equilibrium vacancy concentrations on the dislocation core surface from outside and inside
respectively and can be written as

cd (z) = c0e
� fcl(z)


bkT , ccd (z) = cc0e
� fcl(z)


bkT ;

with c0 = e�
E
f
v

kT being the reference equilibrium vacancy concentration in the bulk and cc0 = e�
E
f
c

kT

being the reference equilibrium vacancy concentration in the dislocation core region. Here Efv and
Efc are the vacancy formation energy in the bulk and within the dislocation core respectively. fcl
is the climb component of the Peach-Koehler force on the dislocation. k is Boltzmann�s constant, T
is the temperature, 
 is the volume of an atom. s is the arc-length parameter along the dislocation.
Under those notations, we have c0 = k�c

c
0 where k� is a dimensionless parameter indicating the

di¤erence between the hopping rates out of and into the dislocation core.
Using the new formulation, Xiang et al. [58] derived climb velocity formula for the special

cases of a straight edge dislocation and a circular prismatic loop. In the limiting cases of negligible
stress variation and fast exchange of vacancies between the dislocation and the bulk, their formula
recovers classical climb velocity formula [41]. In particular, they considered prismatic loop at low
temperature. It has been observed in experiments that the loop translate under a stress gradient
and the vacancy bulk di¤usion is negligible, i.e. Dv � 0: Under this condition, the climb velocity
formula reduces to

vcl = Dcb
d2ccd
ds2

:

When fcl � 1; ccd � Cfcl for some constant C: Recall fcl = �� log � + O (1) with � being the
curvature of the object boundary and � representing thickness of the region in which delta function
of the object boundary is regularized [74], climb velocity formula in the sharp interface becomes

vcl = C
d2�

ds2
:

This resembles the sharp interface formulation for Cahn-Hillard equation with a concentration
dependent mobility and this motivates us to ask the following question.

A5. Can we �nd a phase �eld formulation for this equation?

One of the main di¢ culty in �nding a phase �eld formulation for this is due to the exponential
expression of ccd: In joint discussion with Niu and Xiang, we obtained a phase �eld formulation
through inner and outer expansions for the case where ccd = �c�+g(s): Is it possible to modify
our argument to �nd a phase �eld formulation for ccd = exp (�c�+ g(s))?

2.2 Domain walls in ferromagnetic �lms.

Soft thin ferromagnetic �lms has been widely used as a data storage solution in modern technology.
The related mathematical model has been extensively studied over the past 10 years. It is known
that for su¢ ciently thin �lms, the magnetization vector almost lies entirely in the �lm plane. Film
exhibits magnetic patterns consists of domains on which magnetization vector is almost constant.
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Domains are connected by thin transition layers called domain walls along which magnetization
vector changes rapidly from one direction to another.

The study of the domain wall structure has attracted a lot of attention. One of the common
domain wall for thin �lm is Néel wall, in which the magnetization vector exhibit an in-plane 180�

rotation between opposite magnetization. The structure of the Néel wall is rather well understood
at current stage. Analysis based on micromagnetic arguments has been summarized nicely in books
[1] and [43] (see also [54], [56], [61] etc). Experimental evidence of the one dimensional Néel wall
pro�les can be found in [11, 44, 69]. Rigorous mathematical analysis of Néel wall is more recent,
starting from the work of García-Cervera [31, 32] on the analysis of the associated one dimensional
variational problem. Melcher [52] studied the energy minimizer of the two dimensional reduced
thin �lm model and obtained symmetry, monotonicity of the one dimensional minimizing pro�le as
well as the logarithmic decay beyond the core region. Linearized stability of the one dimensional
Néel wall with respect to one dimensional perturbations is proved in [17]. Asymptotic stability of
one dimensional Néel wall with respect to large two dimensional perturbations is demonstrated in
[27].

Recently, Chermisi and Muratov [21] studied the reduced one dimensional energy in the presence
of an applied in-plane magnetic �eld applied in the direction normal to the easy axis. They expressed
the magnetic energy in terms of the phase angle rather than the usual two-dimensional unit vector
representation of the magnetization. They obtained uniqueness and strict monotonicity of the angle
variable for the minimizing Néel wall structure. Moreover, they proved precise asymptotic behavior
of the minimizing Néel wall pro�les at in�nity. The associated Euler-Lagrange equation in their
setting is expressed as an ODE with a nonlocal term.

In joint work with C. Muratov [57], we follow the variational setting introduced in [21] and
consider the critical point of the associated energy functional which is monotone. We prove that
any monotone critical point of the reduced one dimensional energy is unique. Thus provide a better
understanding of the numerical evidence presented in [56].

The energy functional related to such system, introduced by Landau and Lifschitz, can be
written in CGS units as a combination of �ve terms, namely

E (M) =
A

2 jMsj2
Z


jrMj2 dx+ K

2 jMsj2
Z


� (M) dx�

Z


Hext �Mdx

+
1

2

Z
R3

Z



r �M (x)r �M (x0)

jx� x0j dxdx0 +
M2
s

2K

Z


jHextj2 dx:(2.6)

Here 
 � R3 is the domain occupied by the ferromagnetic material,M :R3 ! R3 is the magnetiza-
tion vector that satis�es jMj =Ms in 
 andM = 0 outside 
; positive constants Ms; A;K are the
material parameters denoted as saturation magnetization, exchange constant and the anisotropy
constant respectively, Hext is an applied external �eld, and � : R3 ! R is a nonnegative potential
which vanishes at �nitely many points. r�M in the double integral is understood in distributional
sense. The �ve terms in (2:6) represent the exchange energy, the anisotropy energy, the Zeeman
energy, the stray-�eld energy and an inessential constant term added for convenience.

In the case of extended monocrystalline thin �lms with the in-plane easy axis we have 
 =
R2 � (0; d) : Without loss of generality, we shall assume the easy axis is in the e2 direction. Here
ei is the unit vector in the ith coordinate direction. For moderately soft thin �lms, a reduced
thin �lm energy has been derived [24, 25, 56], after signi�cant reduction of energy. For a better
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understanding of the parameter regime, we introduce the following quantities

l =

�
A

4�M2
s

� 1
2

; L =

�
A

K

� 1
2

; Q =

�
l

L

�2
representing the exchange length, the Bloch wall thickness and the material quality factor respec-
tively. For ultra-thin and soft �lm, we have d . l . L and at the same time balanced as Ld � l2.
We can then introduce a dimensionless parameter

� =
4�M2

s d

KL
=
Ld

l2
=

d

l
p
Q
:

For reduced thin �lm energy, we can write

E (m) =
1

2

Z
R2
jrmj2 + 1

2

Z
R2
(m � e1 � h)2 +

�

8

Z
R2

Z
R2

r �m (x)r �m (x0)
jx� x0j dxdx0;

where m :R2 ! S1 is the unit magnetization vector in the �lm plane.
We propose to work on the following problems.

B1. 2D stability of 1-D Néel walls.

Asymptotic stability of 1-D Neel wall with respect to 2-D perturbations which are periodic in
x2 has been established in [27]. Their approach is based on a scaling law for the minimum energy.
Dropping the anisotropy energy, they consider the thin �lm approximation of (2:6) in the following
form

(2.7) Ex1x2thin
�
m0� = d2t

Z
R�(0;w)

��r0m0��2 + t2

2

Z
R�(0;w)

�����r0���1=2r0 �m0
���2 dx0:

Where x0 = (x1;x2) ; m0 (x1; x2) = (0;�1) for �x1 � wtail and m0 (x1; x2 + w) = m0 (x1; x2) ; wtail
being the tail width for Néel wall. It is shown that the energy of ultra-thin Néel wall behaves like

ENeelthin �
�

2
t2 ln�1

twtail
d2

� min 1
w
Ex1x2thin

�
m0� ;

in the regime d2t�1 � wtail; thus the 1d Néel wall is asymptotically optimal.
We shall attack the 2-D stability of 1-D Neel wall di¤erently. We �rst look at local stability

with respect to 2-D perturbations. In joint work with Christof Melcher and Cyrill Muratov [53],
we achieved the following local stability result on 1-d Néel wall.

Lemma 2 (local stability) If � =� (x1) is a one dimensional Néel wall subject to center and bound-
ary conditions � (0) = 0 and � (�1) = ��

2 , then Hess (E0 (�)) (';') � 0 for any ' compactly
supported in R2 and ' (0; 0) = 0:

To study stability of 1-D Néel wall under large 2 dimensional perturbations, we look at the
following model problem

(2.8) ��u+ (��)
1
2 u� sinu (cosu� h) = 0 in R2;

where u : R2 ! R is a bounded function satisfying @u
@x1

> 0 in R2 and limx!�1 u (x1;x2) = �1.
We proved u is a function of one variable using some ideas from work on layer solutions of sum of
fractional Laplacians such as paper by Cabre and Serra [14].

Can we apply this to study the stability of 1-D Neel wall under large two dimensional pertur-
batiions? The main challenge is how to handle the nonlocal term in the original setting.
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B2. Get a better understanding of 2d domain wall structures such as cross-tie walls.

While 1-d Neel wall structure is relatively well understood, 2d domain wall structures are less
studied. One typical 2d wall structures observed in ferromagnetic thin �lms is cross-tie walls. Cross
tie wall is a periodic pattern of small-angle Neel walls with period wcross which macroscopically
acts as 90� walls. Experiments indicate the cross-tie wall move closer together with increasing
anisorotropy. It is also observed in experiments that wcross decreases as �lm thickness t increases.
However, a rigorous theory on mechanisms predicting the value of wcross is still lacking. Based on
the observation that the cross tie wall resembles an ensemble of Néel walls, a heuristic argument
on internal length scale for cross tie wall is developed in [26]. Their main conclusion is that the
internal length scale of cross tie wall should be determined by the repulsive interaction of Néel wall
tails. How can we make this rigorous?

Another interesting problem is the transition between di¤erent domain walls as thickness of �lm
varies. Cross tie wall is often observed in intermediate regime (t � d), the transition from Néel wall
to cross tie wall then to asymmetric Bloch wall as thickness of �lm increases has been observed both
experimentally [36, 43] and in numerical simulations [67]. In the regime Q � t2d�2 � Q�1;under
the assumption that the magnetization is independent of the tangential in-plane variable x2 (i.e.
m = m (x1; x3)); transition from a Néel wall to an Asymmetric Bloch wall as thickness increases
has been classi�ed in [59]. Using a scaling law argument, they rigorously identi�ed the transition
by establishing the cross-over in the speci�c wall energy. Can we get a similar scaling law analysis
for this transition for the full three dimensional model? The scaling law argument relies on the
matching upper bounds and lower bounds. While the upper bounds are relatively easy using the
known ansatz, the matching lower bound which is ansatz free is always more di¢ cult. A related
work on cross tie wall is [3] where they identi�ed the exact form of a cross tie pattern as a minimum
state for a sharp interface model. How do we adjust their argument to get a similar lower bound
by matching the parameters? Can we combine the heuristic idea in [26] and the rigorous argument
in [3] in a suitable way to get a rigorous explanation on wcross?
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