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A TYPE OF HOMOGENIZATION PROBLEM

Fanghua Lin and Xiaodong Yan

Courant Institute

1. Introduction. We consider the following homogenization problem (For relevant
discussions, see [BK, L1]). Let Ω be a smooth bounded domain in Rd with a periodic
structure, Ω0 is a periodic subdomain of Ω with |Ω0| = γ|Ω| for some given constant
γ > 0. N is a smooth compact submanifold of Rk. We consider

min
∫

Ω

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x)dx

subject to, with constants 1 ≤ α, β ≤ d, c1 > 0, c1 + c2 > 0,

aαβ(x) = δαβ(c1 + c2χΩ0)Ik ∈Mk×k;
nε : Ω → N, nε|∂Ω = g.

Here Mk×k being the set of all k × k matrices, Ik is the identity matrix on Rk.
The question we are concerned is the regularity for nε and the asymptotic be-

havior as ε tends to zero. The problem can be viewed as an analogue of the usual
Γ convergence type problem (see for example, [Ms]) onto curved targets. Due to
this constraint in the target, we need to apply techniques used for harmonic maps
to construct comparison functions in proving the homogenization limit. We follow
the ideas in [AL1] to obtain uniform small energy Hölder estimates and Lipschitz
estimates. Such uniform Hölder or W 1,p estimates were also found in [C] for some
different nonlinear homogenization problems using rather different approaches.

The paper is designed as follows. In section 2, we prove partial regularity result
of minimizer nε for fixed ε. We obtain a similar estimates on the size of the singular
set as for minimizing harmonic maps. In section 3, we prove the homogenization
limit theorem and uniform apriori estimates of nε independent of ε. We also point
out an interesting application of our uniform estimates to obtain a uniform bound
on the number of singularities of nε in a special case.

2. Regularity of nε. Let Ω be a bounded smooth domain of Rd, A ⊂ Ω is a
smooth subset of Ω with |A| = γ|Ω|, N is a smooth compact submanifold of Rk.
We consider the following minimization problem:

min
{∫

Ω

aαβD
αn ·Dβndx, n ∈ H1(Ω, N), n|∂Ω = g

}
, (2.1)

where
aαβ(x) = δαβ(1 + χA)Ik ∈Mk×k.
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The existence of a minimizer is standard. For simplicity of notation, we define

H1
g (Ω, N) = {n ∈ H1(Ω,Rk), n(x) ∈ N a.e. and n|∂Ω = g}

and we are interested in obtaining some regularity results for the minimizer.
First we derive the Euler-Lagrange equation for a minimizer. Let Nε = {x ∈

Rk, dist(x,N) < ε} be a small tubular neighborhood of N on which nearest point
projection Π onto N is well defined. Consider n + sξ where ξ = (ξ1, ξ2, · · · , ξk) ∈
C∞0 (Ω,Rk). For s small enough, n+ sξ lies in Nε and the following mapping

ns = Π ◦ (n+ sξ)

is an admissible mapping with

Dαns = Dαn+ s(dΠn ◦Dαξ + HessΠn(ξ,Dαn)) + o(s).

Therefore

0 =
d

ds
|s=0E(ns) =

d

ds
|s=0

∫
Ω

aαβ(x)Dαns(x) ·Dβns(x)dx

= 2
∫

Ω

aαβ(x)Dαn(x) · dΠn(Dβξ(x)) + aαβ(x)Dαn(x) ·HessΠn(ξ,Dβn)

= 2
∫

Ω

aαβ(x)Dαn ·Dβξ − aαβ(x)(An(Dαn,Dβn)) · ξ

= 2
∫

Ω

d∑
α=1

{(1 + χA)Dαn ·Dαξ − (1 + χA)An(Dαn,Dαn) · ξ} = 0, (2.2)

here An is the second fundamental form of N at n(x).
Partial regularity result for n then follows from a more general theorem:

Theorem 2.1. [Theorem 1 and 2, [Sh]] Let Ω ⊂ Rd be a smooth open set, E =∫
Ω
aαβD

αn · Dβn, aαβ(x) ∈ L∞ satisfying Λ−1Id ≤ aαβ(x) ≤ ΛId, where Λ is
a positive constant, Id is the d × d unit matrix. Assume N is a smooth compact
Riemannian manifold, n is an E-minimizing map from Ω to N , then there exists
a ε = ε(Λ) > 0 such that if r2−d

∫
Br(x)

|∇n|2 ≤ ε, then n ∈ Cα(B r
2
(x)) for some

0 < α < 1. Thus n is locally Hölder continuous outside a relatively closed subset
Sn of Ω. Moreover, Hd−2(Sn) = 0.

Meyers’ example ([Gi]) show that Cα regularity for general case is optimal. For
our case, the coefficient is piecewise constant, we can actually prove the following
lipschitz partial regularity result.

Theorem 2.2. Let aαβ = δαβ(c1 + c2χA), c1 > 0, c1 + c2 > 0 are given constants.
Then any E−minimizing map n is locally lipschitz continuous on Ω\Sn.

The proof of theorem 2.2 depends on a standard blow up argument and the
observation that ∇n ∈ Lp

loc for some p > 2. Our analysis uses strong convergence
of the blow up coefficients. We remark that the same arguments therefore is also
applicable to the case when aαβ is piecewise continuous but would fail in general
case when aαβ are merely bounded and measurable.

The lipschitz regularity theorem follows from small energy estimates. An im-
portant ingredient in proving small energy estimates is the following monotonicity
formula. For simplicity of notation, we shall always assume aαβ = δαβ(1 + χA).
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Denote

E(n, r, x) =
1

rd−2

∫
Br(x)

aαβ(y)Dαn(y) ·Dβn(y)dy

=
1

rd−2

∫
Br(x)

(1 + χA)|∇n(y)|2dy, (2.3)

we have

Lemma 2.1. There are constants c and R0 depending only on d,A such that

E(n, r, x) ≤ cE(n,R, x) (2.4)

for any x ∈ Ω, BR(x) ⊂ Ω and all r ≤ R ≤ R0.

Proof of Lemma 2.1: Note the lemma is trivial for d = 2, we assume d > 2.

Case I: BR(x) ⊂ A or BR(x) ⊂ Ω \A. We prove the case when BR(x) ⊂ Ω \A,
the other case is proved in the same way. For σ ∈ (r,R), take comparison map
defined by

vσ(x) =
{
n(σx

|x| ) |x| < σ,

n(x) |x| ≥ σ.
(2.5)

By minimality of n, we have∫
Bσ(x)

|∇n|2 =
∫

Bσ(x)

(1 + χA)|∇n|2 ≤
∫

Bσ(x)

(1 + χA)|∇v|2 =
∫

Bσ(x)

|∇v|2

= (d− 2)−1σ

(∫
∂Bσ(x)

|∇n|2 −
∫

∂Bσ(x)

∣∣∣∣∂n∂r
∣∣∣∣2
)
,

which is

0 ≤ σ2−d

∫
|x|=σ

∣∣∣∣∂n∂r
∣∣∣∣2 ≤ d

dσ

(
σ2−d

∫
Bσ(x)

|∇n|2dy

)
, ∀σ ∈ (r,R). (2.6)

Integrate (2.6) from r to R, we have

r2−d

∫
Br(x)

|∇n|2dy ≤ R2−d

∫
BR(x)

|∇n|2dy.

Case II: x ∈ ∂A, there exists a R0 depending only A such that ∂A∩B(x,R0) can
be expressed as a graph of a C2 function for any x ∈ ∂A. Moreover, R0 can be
chosen in such a way that there exists a λ > 0, λR0 ≤ 1

2 , for any
w ∈ H1(B(x,R0),Rk) and any σ ≤ R0,

(1−λσ)
∫

Bσ(x)

(1+χRd
+
)|∇w|2 ≤

∫
Bσ(x)

(1+χA)|∇w|2 ≤ (1+λσ)
∫

Bσ(x)

(1+χRd
+
)|∇w|2.

(2.7)
For R ≤ R0 and any σ ∈ (r,R), let

vσ(x) =
{
n(σx

|x| ) |x| ≤ σ,

n(x) |x| > σ.
(2.8)
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By minimality of n and (2.7) we have

(1− λσ)
∫

Bσ(x)

(1 + χRd
+
)|∇n|2 ≤

∫
Bσ(x)

(1 + χA)|∇n|2

≤
∫

Bσ(x)

(1 + χA)|∇vσ|2 ≤ (1 + λσ)
∫

Bσ(x)

(1 + χRd
+
)|∇vσ|2

= (1 + λσ)(d− 2)−1σ

[∫
∂Bσ(x)

(1 + χRd
+
)|∇n|2 −

∫
∂Bσ(x)

(1 + χRd
+
)
∣∣∣∣∂n∂r

∣∣∣∣2
]
.

This implies

d

dσ

{
σ2−d(1 + λσ)2(d−2)

∫
Bσ(x)

(1 + χRd
+
)|∇n|2

}

≥ σ2−d(1 + λσ)2(d−2)

∫
∂Bσ(x)

(1 + χRd
+
)|∂n
∂r
|2 ≥ 0. (2.9)

Integrate (2.9) from r to R, we obtain

r2−d(1+λr)2(d−2)

∫
Br(x)

(1+χRd
+
)|∇n|2 ≤ R2−d(1+λR)2(d−2)

∫
BR(x)

(1+χRd
+
)|∇n|2.

(2.10)
(2.10) together with (2.7) gives

r2−d(1 + λr)2(d−2)−1

∫
Br(x)

(1 + χA)|∇n|2

≤ R2−d(1 + λR)2(d−2)(1− λR)−1

∫
BR(x)

(1 + χA)|∇n|2. (2.11)

Inequality (2.4) then follows from (2.11) with c = 22d and R0 small enough
depending only on A.
Case III: x /∈ ∂A and |BR(x) ∩A| > 0, |BR(x) ∩Ac| > 0. R ≤ R0, here R0 is as
in case II.

1) d(x, ∂A) ≥ 1
4R,

a) If r > 1
4R, then

E(n, r, x) ≤ 4d−2E(n,R, x).

b) If r ≤ 1
4R < d(x, ∂A), we can apply case I to Br(x) ⊂ B 1

4 R(x) and
obtain

E(n, r, x) ≤ E(n,
1
4
R, x) ≤ 4d−2E(n,R, x).

2) d(x, ∂A) < 1
4R,

a) If r ≥ 1
4R, we still have

E(n, r, x) ≤ 4d−2E(n,R, x).

b) If d(x, ∂A) ≤ r ≤ 1
4R, then we can find y ∈ ∂A such that

Br(x) ⊂ B2r(y) ⊂ BR
2
(y) ⊂ BR(x). Hence

E(n, r, x) ≤ 2d−2E(n, 2r, y) ≤ 2d−2cE(n,
R

2
, y) ≤ 4d−2cE(n,R, x).
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c) If r ≤ d(x, ∂A) = l < 1
4R, then we can find y ∈ ∂A such that

Br(x) ⊂ Bl(x) ⊂ B2l(y) ⊂ BR
2
(y) ⊂ BR(x), apply case I and case II we

have

E(n, r, x) ≤ E(n, l, x) ≤ 2d−2E(n, 2l, y) ≤ cE(n,
R

2
, y) ≤ cE(n,R, x).

The lemma then holds for all r ≤ R ≤ R0 where c,R0 depends only on d,A. �

Remark 2.1. For r ≤ 1, x0 ∈ Rd, let Ax0,r = {x, x0 + rx ∈ A}. Examine the
proof of lemma (2.1) carefully, we see that the same proof shows (2.4) holds for all
nr with constants c,R0 independent of r ≤ 1, x0, here nr is a minimizer of
functional Ir =

∫
Ω
(1 + χAx0,r )|∇n|2. .

If we take the radial derivative term into consideration in the above argument we
can prove more. Set nx0,λ(x) = n(x0 + λx) for λ ∈ (0, 1], a(x) = 1 + χA, then∫

B1(0)

a(x0 + λx)|∇nx0.λ(x)|2dx =
1

λd−2

∫
Bλ(x0)

a(x)|∇n(x)|2dx.

Lemma 2.2. There is a sequence λi → 0, λi ∈ (0, 1] such that nx0,λi
converges

weakly in W 1,2(B1(0), N) to a limiting map nx0 ∈W 1,2(B1(0), N) satisfying
∂nx0

∂r = 0 a.e. in B1(0).

Proof : The proof follows directly from the monotonicity formula and a similar
argument as in [SU1].

From lemma 2.1 can also prove the following Cacciopoli type inequality.

Lemma 2.3. Let n be an energy minimizer of (2.1), Λ be a given constant, if
R2−d

∫
BR(x0)

|∇n|2 ≤ Λ for some ball BR(x0) with closure contained in Ω, then

ρd−2

∫
B ρ

2
(y)

|∇n|2 ≤ Cρ−d

∫
Bρ(y)

|n− ny,ρ|2

for each y ∈ BR
2
(x0), ρ < R

4 . Here C = C(d,N,Λ, A) > 0.

Proof : The proof of lemma 1 in section 2.8 of [Si] can be carried through in our
case with only slight changes. We refer the reader to their proof.

A direct result of the Caccioppoli’s inequality is the following reverse Hölder
inequality. The proof is standard (see e.g. [Gi]).

Lemma 2.4. Let a(x) = 1 + χA. If n is a minimizer of I =
∫
Ω
a(x)|∇n|2dx in

H1
g (Ω, N), BR(x) ⊂ Ω and for some given Λ, we have R2−d

∫
BR(x)

a(y)|∇n|2 ≤ Λ,
then there exists p > 2 such that |Dn| ∈ Lp

loc(Ω) and for ρ < R
4 , y ∈ BR

2 (x) we have{
−
∫

B ρ
2
(y)

|Dn|p
} 1

p

≤ C

{
−
∫

Bρ(y)

|Dn|2dx

} 1
2

,

where C, p depend only on d,N,A,Λ.

To show that n is locally Lipschitz continuous on Ω\Sn. After a suitable
translation, rotation and scaling, it reduces to showing the following statement in
the normalized situation:
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Let A = {(x, y) ∈ Bd−1
1 (0)× R : y > φ(x)} and φ is a C1,γ function on Bd−1

1 (0)
with φ(0) = |∇φ(0)| = 0 and ||φ||C1,γ ≤ 1, then any minimizer n of∫

B1(0)
(1 + χA)|∇n|2dx, u is Lipschitz continuous in B 1

2
(0) ⊂ Rd.

We let ‖φ‖C1,γ(B1) = K(1) and define K(r) = ‖φr‖C1,γ(B1), for 0 < r < 1, where
φr(x) = 1

rφ(rx). Thus K(r) ≤ rγK(1), 0 < r < 1. We then have the following
statement.

Lemma 2.5. Let a(x) = 1 + χA, λ ≤ 1. There exists constant
δ0, θ ∈ (0, 1), µ ∈ (0, 1) depending only on d,N such that for any minimizer nλ of
Iλ =

∫
B1(0)

a(λx)|∇n|2dx satisfying∫
B1(0)

a(λy)|∇nλ(y)|2dy ≤ δ0,

we have
1

θd−2

∫
Bθ(0)

a(λy)|∇nλ|2 ≤
∫

B1(0)

a(λx)|∇nλ|2, (2.12)

and

−
∫

B θ
4
(0)

|Dλnλ −DλnλB θ
4
(0)|2 ≤ θ2µ −

∫
B 1

4
(0)

|Dλnλ −DλnλB 1
4
(0)|2, (2.13)

here Dλnλ = {(1 + χAλ
)Ddnλ, D1nλ, · · · , Dd−1nλ}, Din = ∂n

∂xi
, i = 1, · · · , d.

Aλ = {x, λx ∈ A}.

Proof : (2.12) follows from small energy estimates in [Sh] (Proof of theorem 1 in
[Sh]). We prove (2.13) by a blow up argument. If (2.13) were not true, there
would exist εk, nk, λk such that nk is a minimizer of

∫
Ω
(1 + χAλk

)|∇n|2 with∫
B1(0)

(1 + χAλk
)|∇nk|2 = ε2k ↓ 0 (2.14)

but

−
∫

B θ
4
(0)

|Dλknk −DλknkB θ
4
(0)|2 > θ2µ −

∫
B 1

4
(0)

|Dλknk −DλknkB 1
4
(0)|2.

Let

mk(x) =
nk(x)− ak

εk
, ak = −

∫
B1(0)

nkdx. (2.15)

Then mk is a bounded sequence in H1(B1(0),Rk). Passing to a subsequence if
necessary, we may assume mk converges weakly to m ∈ H1(B(0, 1),Rk). Since
each Ak is a scaling of A with a scaling constant smaller than one and A is a
smooth set, the perimeter P (Aλk

, B1(0)) is finite and we can assume
χAλk

∩B1(0) → χRd
+∩B1(0). Since nk is a minimizer of

∫
Ω
(1 + χAλk

)|∇n|2, we have∫
B1(0)

d∑
α=1

(1+χAλk
)Dαmk ·Dαηdx = εk

∫
B1(0)

d∑
α=1

(1+χAλk
)Ank

(Dαmk, Dαmk)ηdx

(2.16)
and ∫

B1(0)

d∑
α=1

(1 + χRd
+
)Dαm ·Dαηdx = 0 (2.17)
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for any η ∈ C∞0 (B(0, 1),Rk). Subtracting (2.17) from (2.16) we find∫
B1(0)

d∑
α=1

{
(1 + χAk

)Dαmk ·Dαη − (1 + χRd
+
)Dαm ·Dαη

}
dx

= εk

∫
B1(0)

d∑
α=1

(1 + χAk
)Ank

(Dαmk, Dαmk)ηdx. (2.18)

By (2.14) and lemma 2.4, we can find some p > 2 depending only d,N ,

(−
∫

B(0, 1
2 )

|∇nk|pdx)
1
p ≤ C(−

∫
B(0,1)

|∇nk|2dx)
1
2 (2.19)

for some constant C depending only on d,N .
After rescaling, (2.19) reads

(−
∫

B(0, 1
2 )

|∇mk|pdz)
1
p ≤ C(−

∫
B(0,1)

|∇mk|2dz) 1
2 . (2.20)

It follows that |∇mk| is bounded in Lp(B 1
2
(0)). Moreover, a similar argument as

in lemma 4.1 of [Ev1], we conclude that mk is bounded in Ls(B 7
8
(0)) for all

1 ≤ s <∞. Let q satisfy 2
p + 1

q = 1. By approximation the identity (2.18) holds
for η ∈ H1

0 (B1(0),Rk) ∩ Lq(B1(0),Rk). We now insert η = ξ2(mk −m) into
(2.18). Here ξ ≡ 1 in B 1

4
(0) and ξ ≡ 0 outside B 3

8
(0).

The left hand side of (2.18) is

Lk =
∫

B1(0)

(1 + χAk
)|∇mk −∇m|2ξ2 +

∫
B1(0)

(1 + χAk
)∇mk · ∇ξ2ξ(mk −m)

−
∫

B1(0)

(1 + χRd
+
)∇mk · ∇ξ2ξ(mk −m) +

∫
B1(0)

(χAk
− χRd

+
)∇mk · (∇mk −∇m)ξ2

≥
∫

B 1
4
(0)

|∇mk −∇m|2dx+ o(1).

(2.21)

The last inequality follows from the fact that mk → m strongly in L2(B1(0)),
∇mk,∇m are bounded in Lp(B(0, 1

2 )) and χAk
→ χRd

+
strongly in Lq(B1(0)).

The right hand side of (2.18) reads

Rk = εk

∫
B1(0)

∑
B1(0)

(1 + χAk
)Ank

(Dαmk, Dαmk)ξ2(mk −m)dx

≤ εkC

∫
B1(0)

|∇mk|2ξ2|mk −m|

≤ εkC

{∫
B1(0)

|∇mk|pξ
p
2

} 2
p
{∫

B1(0)

ξq|mk −m|q
} 1

q

→ 0.

(2.22)

Combine (2.21) and (2.22) we obtain

∇mk → ∇m strongly in L2(B 1
4
(0)). (2.23)
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Since m is a weak solution of (2.17), we can find some α ∈ (0, 1) such that

−
∫

B θ
4
(0)

|D0m−D0m θ
4
|2 ≤ Cθ2α −

∫
B 1

4
(0)

|D0m−D0m 1
4
|2, (2.24)

where D0m = ((1 + χRd
+
)Ddm,D1m, · · · , Dd−1m). Pick µ < α, choose θ

sufficiently small, a contradiction will then arise from the strong convergence of
∇mk to ∇m in L2 and strong convergence of χAk

to χRd
+

in Lq.�

A standard iteration argument then gives Lipschitz regularity for n. Moreover, it
gives the following estimates on the gradients.

Lemma 2.6. Let n be a minimizer of (2.1). There exists δ > 0 such that if
1

rd−2

∫
Br(x)

|∇n|2 ≤ δ, then n is Lipschitz continuous in B r
2
(x) with

|∇n|L∞(B r
2
(x)) ≤ C

(
1

rd−2

∫
Br(x)

|∇n|2
) 1

2
. Here C = C(d,N).

Further more, we could reduce the dimension for the singular set of n. First we
quote the following lemmas from Simon’s lecture notes [Si], which is originally due
to Luckhause ([Lu1, Lu2]).

Lemma 2.7 (Corollary 1, [Si], page 27). Let N be a smooth compact manifold
embedded in Rp and Λ > 0. There are δ0 = δ0(n,N,Λ) and C = C(n,N,Λ) such
that the following hold:

(1) If we have ε ∈ (0, 1) and if u ∈W 1,2(Bρ(y);N) with ρ2−n
∫

Bρ(y)
|∇u|2 ≤ Λ,

and ε−2nρ−n
∫

Bρ(y)
|u− λy,ρ|2 ≤ δ20, then there is σ ∈ ( 3ρ

4 , ρ) such that there
is a function w = wε ∈W 1,2(Bρ(y);N) which agrees with u in a
neighborhood of ∂Bσ(y) and which satisfies

σ2−n

∫
Bσ(y)

|Dw|2 ≤ ερ2−n

∫
Bρ(y)

|Du|2 + ε−1Cρ−n

∫
Bρ(y)

|u− λy,ρ|2.

(2) If ε ∈ (0, δ0], and if u, v ∈W 1,2(B(1+ε)ρ(y)\Bρ(y);N) satisfy the inequalities
ρ2−n

∫
B(1+ε)ρ(y)\Bρ(y)

(|Du|2 + |Dv|2) ≤ Λ and

ε−2nρ−n
∫

Bρ(1+ε)(y)\Bρ(y)
|u− v|2 < δ20, then there is

w ∈W 1,2(Bρ(1+ε)(y)\Bρ(y);N) such that w = u in a neighborhood of
∂Bρ(y), w = v is a neighborhood of ∂B(1+ε)ρ(y), and

ρ2−n

∫
Bρ(1+ε)(y)\Bρ(y)

|Dw|2

≤ Cρ2−n

∫
Bρ(1+ε)(y)\Bρ(y)

(|Du|2 + |Dv|2) + Cε−2ρ−n

∫
Bρ(1+ε)(y)\Bρ(y)

|u− v|2.

Lemma 2.8. There exists a sequence λi → 0 such that the maps na,λi
defined by

na,λi
(x) = n(a+ λix) for x ∈ B1(0)

converges strongly in H1(B1(0), N) to a map na ∈ H1(B1(0), N) which is
homogeneous of degree 0. Moreover, if dist(a, ∂A) > 0, then na is a minimizing
harmonic map; if a ∈ ∂A, then na is a minimizing map of

∫
B1(0)

(1 + χRd
+
)|∇n|2.

Proof : The argument in section 2.9 of [Si] can be carried over with only slight
modification. We refer the reader to their proof.
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Theorem 2.3. Let a(x) = (c1 + c2χA) with c1 > 0, c1 + c2 > 0 and A being a
smooth subset of Ω. Then the interior singular set Sn for any minimizer n of∫
Ω
a(x)|∇n|2 has Hausdorff dimension less than or equal to d− 3, in particular,

Sn is a discrete set of points when d = 3.

Proof : We can follow essentially the same argument of [SU1] section 5 or
Theorem 4.5 of [HL]. We refer readers to their papers. �

Under the additional assumption that g ∈ C1,α(∂Ω), we can have the following.

Theorem 2.4. Let g ∈ C1,α(∂Ω, N). If n is a minimizer of
∫
Ω
(1 + χA)|∇n|2 in

H1
g (Ω, N), then the singular set Sn of n is a compact subset of the interior of Ω;

in particular, n is C1,α in a full neighborhood of ∂Ω.

Proof : Note A ⊂⊂ Ω, the same argument in [SU2] applies in our case and the
boundary regularity of n follows. �

In general case where aαβ is only bounded and measurable, the monotonicity
formula is lacking, we can not carry out the above argument to further reduce the
dimension of Sn. Nonetheless, under additional assumptions on N , this can be
done. Assume N is a simply connected smooth compact submanifold of Rk,
aαβ(x) are bounded measurable functions. We consider the regularity of a
minimizer of

∫
Ω
aαβ(x)Dαn ·Dβn in H1

g (Ω, N).
First we quote the following extension lemma from[HL](a simple version in the
case N = S2 can be found in [HKL])

Lemma 2.9 (Theorem 6.2, [HL]). Let N be a simply connected smooth compact
submanifold of Rk. If u ∈W 1,2(Ω, N) and a ∈ Ω, then for almost every positive
r < dist(a, ∂Ω), there is a function w ∈W 1,2(Br(a), N) such that w = u on
∂Br(a) and∫

Br(a)

|Dw|2 ≤ C

{∫
∂Br(a)

|∇tanu|2 ·
∫

∂Br(a)

|u− ξ|2dS

} 1
2

,

where ξ ∈ Rk is arbitrary and C is an absolute constant.

Lemma 2.10. There exists a positive constant C = C(d,N) such that for any
minimizer n of

∫
Ω
a(x)|∇w|2 in H1

g (B1(0), N), we have the following uniform
energy bound: ∫

Br(0)

|∇n|2 ≤ C(d,N)
1− r

for 0 ≤ r < 1.

Proof : The proof of Theorem 3.1 in [HKL] can be carried over directly to our
case. �.

Let E =
∫

BR
aij

αβ(x)DαviD
βvjdx,

F = {Σ,Σ ⊂ BR closed and Σ ⊂ singv for some minimizer v of E}, then the
following hold (for a proof, see e.g. [L2]):

Lemma 2.11. •
a) If Σ ∈ F, then Σ−{x}

λ ∩BR ∈ F for |x| < R, 0 < λ < R− |x|.
b) F is compact under the Hausdorff metric.
c) Hn−2(Σ) = 0 for all Σ ∈ F.

Note that a direct result of the lemma is that there exists a δ = δ(N) > 0 such
that Hn−2−δ(Σ) = 0 for all Σ ∈ F.
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3. Homogenization case. In this section, we return to the homogenization
problem. As in classical theory of homogenization, we are interested in
determining the asymptotic behavior of solutions to the above minimization
problem. Typically, this analysis amounts to the knowledge of apriori bounds on
the norms of the solutions which are valid uniformly in the small parameter ε and
ensure the compactness of the family {nε}ε>0 in a suitable function space. Before
we prove the main results, we first introduce some notations used in this section.
We shall always use Einstein’s summation principle in this section.

Eε(n, r, x) =
1

rn−2

∫
Br(x)

aαβ

(y
ε

)
Dαn(y) ·Dβn(y)dy,

Iε = aε(n, n) =
∫

Ω

aαβ

(x
ε

)
Dαn(x) ·Dβn(x)dx,

Y : unit cell in Rd, (f) =
1
|Y |

∫
Y

f(x)dx,

(u, v) =
∫

Ω

u · vdx.

We define

W (Y ) = {φ|φ ∈ H1(Y,Rk), φ = (φ1, · · · , φk) periodic in Y }
for φ, ψ ∈ H1(Y,Rk), we set

a1(φ, ψ) =
∫

Y

aαβ(y)Dαφ(y) ·Dβψ(y)dy,

and we introduce
P β

j (y) = {0, · · · , 0︸ ︷︷ ︸
j

, yβ , 0, · · · , 0}

with β ∈ Rd, |β| = 1, 1 ≤ j ≤ k and define

χβ
j ∈W (Y ), such that

a1(χ
β
j − P β

j , ψ) = 0 ∀ψ ∈W (Y ). (3.1)

Since χβ
j is uniquely defined up to a constant, the following quantity is uniquely

defined
qij
αβ =

1
|Y |

a1(χ
β
j − P β

j , χ
α
i − Pα

i ) (3.2)

and
a(u, v) =

∫
Ω

qij
αβD

αuiD
βvjdx.

In particular, for aij
αβ(x) = δij(c1 + c2χΩ0)δαβ , the above equality (3.1) and (3.2)

gives
qij
αβ = a0δ

ijδαβ (3.3)
for some constant a0 > 0 uniquely determined by c1, c2 and Ω0.

Remark 3.2. Note that qij
αβ can be given an “adjoint” form. We define

a∗1(φ, ψ) = a1(ψ, φ) ∀ψ, φ ∈ H1(Y,Rk),

and we define χβ∗
j by

a∗1(χ
β∗
j − P β

j , ψ) = 0 ∀ψ ∈W (Y ).
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We then have the formula (See e.g. [BLP])

qij
αβ =

1
|Y |

a∗1(χ
α∗
i − Pα

i , χ
β∗
j − P β

j ). (3.4)

We shall also need some standard results and notations from [BLP]. We denote

Aε = − ∂

∂xα

(
aij

αβ

(x
ε

) ∂

∂xβ

)
.

We expand Aε = ε−2A1 + ε−1A2 + ε0A3, where

A1 = − ∂

∂yα

(
aij

αβ(y)
∂

∂yβ

)
,

A2 = − ∂

∂yα

(
aij

αβ(y)
∂

∂xβ

)
− ∂

∂xα

(
aij

αβ(y)
∂

∂yβ

)
,

A3 = − ∂

∂xα

(
aij

αβ(y)
∂

∂xβ

)
.

A∗ denotes the adjoint operator of A.

3.1. Homogenization limit. In this section, we prove the following theorem
about the homogenization limit.

Theorem 3.5. For any sequence {nε}, where nε is a minimizer Iε, there exists a
subsequence nεk such that nεk converges weakly to a minimizing harmonic map n
in H1

g (Ω, N). Moreover, there exists some constant a0 > 0 uniquely determined by
aαβ such that

lim
ε→0

∫
Ω

aαβ

(x
ε

)
Dαnε ·Dβnεdx→ a0

∫
Ω

|∇n|2.

We shall prove the theorem in two steps. First we show that n is a weakly
harmonic map (lemma 3.12), we then show that n is a minimizing harmonic map
and the energy convergence results (lemma 3.15).

Lemma 3.12. For any sequence of {nε}, nε being a minimizer of Iε in
H1

g (Ω, N), there exists a subsequence nεk such that nεk converges weakly in
H1

g (Ω, N) to a weakly harmonic map n.

Proof : Let εl be a subsequence such that∫
Ω

aαβ

(
x

εl

)
Dαnεl ·Dβnεl → lim inf

ε→0

∫
Ω

aαβ

(x
ε

)
Dαnε ·Dβnε.

By assumption we have∫
Ω

|∇nεl |2 ≤
∫

Ω

aαβ

(
x

εl

)
Dαnεl ·Dβnεldx ≤ 2

∫
Ω

|∇n1|2dx ≤ C.

Therefore nεl is a bounded sequence in H1
g (Ω,Rk), hence a subsequence (we still

denote by nεl ) converges weakly in H1
g (Ω,Rk), strongly in L2(Ω,Rk) and

pointwise almost everywhere to n ∈ H1
g (Ω,Rk). Since nεl is a minimizer of∫

Ω
aαβ( x

εl
)Dαn ·Dβndx in H1

g (Ω, N), nεl is a weak solution of the following
Euler-Lagrange equation:

−Dβ

(
aαβ

(
x

εl

)
Dαnεl(x)

)
= aαβ

(
x

εl

)
(Anεl (Dαnεl , Dβnεl)).
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To illustrate the main idea, from now on, we assume N = Sn, the general target
case could be proved similarly (though technically more complicated). In this
case, nεl is a weak solution of

−div((c1 + c2χΩεl
)∇nεl

j ) = (c1 + c2χΩεl
)|∇nεl |2nεl

j , 1 ≤ j ≤ k. (3.5)

Here Ωε = {x, x
ε ∈ Ω0}.

Following the idea of [Ev1], we write equation (3.5) in the form

−div((c1 + c2χΩεl
)∇nεl

j ) = (c1 + c2χΩεl
)|∇nεl |2nεl

j

=
d∑

α=1

k∑
q=1

(c1 + c2χΩεl
)
[
∂nεl

q

∂xα

{
∂nεl

q

∂xα
nεl

j −
∂nεl

j

∂xα
nεl

q

}]
.

Let

bqj
ε,α = (c1 + c2χΩε

)
{
∂nε

q

∂xα
nε

j −
∂nε

j

∂xα
nε

q

}
, (3.6)

then from the following lemma 3.13, one concludes that bqj
ε = {bqj

ε,α} satisfies
div(bqj

ε ) = 0 weakly for each 1 ≤ q, j ≤ k. Denote aαβ(x) = (aij
αβ(x)), set

ξj
ε,β = aij

αβ

(x
ε

)
Dαnε

i ,

we see ξj
εl,β

is bounded in L2(Ω). Therefore we can extract a subsequence, we still
denote by ξj

εl,β
for simplicity of notation, such that

ξj
εl,β

⇀ ξj
β weakly in L2(Ω).

Taking into account that nε is bounded in L∞ and converge strongly in L2 to n,
we obtain

bqj
εl,α

⇀ ξq
αnj − ξj

αnq weakly in L2.

For each q, j, apply the Div-Curl lemma (see e.g. [Ev2] or [Mu]) to
d∑

α=1

∂n
εl
q

∂xα b
qj
εl,α

we obtain
∂nεl

q

∂xα
bqj
ε,α ⇀

∂nq

∂xα
(ξq

αnj − ξj
αnq) in D′(Ω).

Therefore the limit equation for ξj
β is∫

Ω

ξj
β

∂φ

∂xβ
dx =

d∑
α=1

k∑
q=1

∫
Ω

∂nq

∂xα
(ξq

αnj − ξj
αnq)φdx, ∀φ ∈ C∞0 (Ω). (3.7)

We compute ξj
β using adjoint functions. We introduce

P = {Pj(y)}k
j=1, Pj(y) = homogeneous polynomial of degree 1,

and we define w such that

A∗1w = 0 in Y,
w − P ∈W (Y ). (3.8)

If we set
w − P = −χ (3.9)

then the equation (3.8) is equivalent to

a∗1(χ− P,ψ) = 0 ∀ψ ∈W (Y ).
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We then introduce

wε(x) = {εwj

(x
ε

)
}.

We observe that
Aε∗wε = 0, (3.10)

and that

wε(x) = P (x)− {εχj

(x
ε

)
}.

For φ ∈ C∞0 (Ω), we set

φn = {φn1, · · · , φnk}.
Choose

v = φwε

as a test function in (3.7), and multiply (3.10) by φnε, we obtain∫
Ω

ξj
ε,β(Dβ(φwεj)− φDβwεj)dx−

∫
Ω

aij
αβ

(x
ε

)
Dβwεj(Dα(φnε

i)− φDαnε
i)dx

=
∫

Ω

Dαnε
qb

qj
ε,αφwεjdx. (3.11)

But one verifies that

Dβ(φwεj)− φDβwεj → Dβ(φPj)− φDβPj strongly in L2(Ω),

Dα(φnε
j)− φDαnε

j → Dα(φnj)− φDαnj strongly in L2.

and that∫
Ω

bqj
ε,αD

αnε
qφwεj =

∫
Ω

Dαnε
qb

qj
ε,αφPj − ε

∫
Ω

Dαnε
qb

qj
ε,αφχj

(x
ε

)
dx

→
∫

Ω

Dαnq(ξq
αnj − ξj

αnq)φPj . (3.12)

The last part of (3.12) follows from the fact that

Dαnε
qb

qj
ε,α ⇀ Dαnq(ξq

αnj − ξj
αnq) in D′(Ω)

and that ∫
Ω

|Dαnε
qb

qj
ε,αφχj

(x
ε

)
|dx ≤ C(N)|χ|L∞‖∇nε‖L2 .

On the other hand, as ε→ 0,

aij
αβ

(x
ε

)
Dβ

ywεj

(x
ε

)
=
(
aij

αβD
β
y (wj)

)(x
ε

)
→ (aij

αβD
β
ywj)

in L∞ weak star, so that passing to the limit in (3.11) gives∫
Ω

ξj
β(Dβ(φPj)− φDβPj)dx− (aij

αβD
β
ywj)

∫
Ω

(Dα(φni)− φDαni)dx

=
∫

Ω

Dαnq(ξq
αnj − ξj

αnq)φPjdx (3.13)

But
∫
Ω
Dα(φni)dx = 0 and the right hand side of (3.13) equals

∫
Ω
ξj
βD

β(φPj)dx,
therefore (3.13) reduces to

−
∫

Ω

ξj
βD

βPjφ+ (aij
αβD

β
ywj)

∫
Ω

φDαnidx = 0,
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i.e.

ξj
βD

βPj = (aij
αγD

γ
ywk)Dαni. (3.14)

We now take P = P β
j , then w = P β

j − χβ∗
j and (3.14) gives

ξj
β = (aik

αγD
γ(P β

jk − χβ∗
jk ))Dαni

=
1
|Y |

a∗1(χ
β∗
j − P β

j ,−P
α
i )Dαni

= qij
αβD

αni,

so that (using (3.2), (3.3) and (3.4))

(ξj
β , D

βvj) = a(n, v) ∀v ∈W 1,2
0 (Ω,Rk),

and n is therefore a weak solution of

−div(a0∇n) = a0|∇n|2n.

Remark 3.3. For general compact manifold N , we can basically follow the same
idea used above to show that the weak limit n is a weakly harmonic map. But we
have to adapt to the work of [Be] to choose appropriate orthonormal frame on
Tn(x)N to rewrite the equation (3.5) into a similar form as (3.8). We then can
prove the homogenization limit n is a weakly harmonic map.

Lemma 3.13. For each φ ∈ C∞0 (Ω), bqj
ε,α defined by (3.6), we have∫

Ω

bqj
ε,αD

αφ(x)dx = 0

for all 1 ≤ q, j ≤ k.

Proof : We compute∫
Ω

bqj
ε,αD

αφ(x) =
d∑

α=1

∫
Ω

∂φ

∂xα
(c1 + c2χΩε

)
(
∂nε

q

∂xα
nε

j −
∂nε

j

∂xα
nε

q

)
dx

=
d∑

α=1

∫
Ω

(c1 + c2χΩε
)
∂nε

q

∂xα

∂(φnε
j)

∂xα
−
∫

Ω

(c1 + c2χΩε
)
∂nε

j

∂xα

∂(φnε
q)

∂xα

=
∫

Ω

(c1 + c2χΩε
)|∇nε|2nε

qn
ε
jφ−

∫
Ω

(c1 + c2χΩε
)|∇nε|2nε

jn
ε
qφdx

= 0.

Lemma 3.14. Let χα
k = {χα

kj} be given by (3.1). If nε is a minimizer of Iε and
nε ⇀ n weakly in W 1,2(Ω, N), then ∀F (x) = (F l

γ(x)) ∈W 1,2 ∩ L∞(Ω,Mk×d),

lim
ε→0

∫
Ω

aij
αβ

(x
ε

)
Dα

y χ
γ
il

(x
ε

)
F l

γ(x)Dβnε
j(x)dx = 0.

Here Mk×k being the set of all k × k matrices.
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Proof : Let φ ∈ C∞0 (Ω). Since nε is a weak solution of the Euler -Lagrange
equation (2.2), we have∫

Ω

aij
αβ

(x
ε

)
Dβnε

j(x)D
α
y χ

γ
il

(x
ε

)
F l

γ(x)φ(x)dx

=
∫

Ω

aij
αβ

(x
ε

)
Dβnε

j(x)ε
(
Dα

x

(
χγ

il

(x
ε

)
F l

γ(x)φ(x)
)
− χγ

il

(x
ε

)
Dα

x (F l
γ(x)φ(x))

)
dx

= ε

∫
Ω

aαβ

(x
ε

)
Anε(Dαnε, Dβnε) · χγ

l

(x
ε

)
F l

γ(x)φ(x)dx

− ε

∫
Ω

aij
αβ

(x
ε

)
Dβnε

j(x)χ
γ
il

(x
ε

)
Dα(F l

γ(x)φ(x))dx

≤ εC|χ|L∞(‖Dnε‖2
L2 |Fφ|L∞ + ‖Dnε‖L2‖D(Fφ)‖L2)

→ 0.

Since φ is arbitrary, we conclude the lemma.

Lemma 3.15. Let n be as in lemma 3.12, then n is a minimizing harmonic map
in H1

g (Ω, N) and∫
Ω

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx→ a0

∫
Ω

|∇n|2dx.

Proof : To show that n is actually a minimizing harmonic map subject to its
boundary constraints, we need to introduce the correctors. Let mε be a cut-off
function defined as follows

mε ∈ D(Ω),
mε(x) = 0 if d(x, ∂Ω) ≤ ε,

mε(x) = 1 if d(x, ∂Ω) ≥ 2ε,

ε|γ||Dγmε(x)| ≤ cγ ,∀γ ∈ N.

Here cγ depends on γ but does not depend on ε.
For fixed positive number L, we define Lηj

β ∈ C∞0 (Mk×d,Mk×d) by

Lηj
β(y) =

 yj
β |y| ≤ L

smooth L < |y| < L+ 1
0 |y| ≥ L+ 1

(3.15)

with ∫
L<|y|<L+1

(Lηj
β(y))2dy <

1
L2
.

We consider
µL

ε (n) = {−εmε(x)χ
p
βi(

x

ε
)Lηβ

p (Dn(x))}k
i=1,

where χp
β = {χpi

β } is defined by (3.1). Let w ∈ H1
g (Ω, N) be a given function,

when ε is small enough, w + µL
ε (w) lies in a small neighborhood of N on which

the nearest point projection Π is well defined, then

wL
ε = Π ◦ (w + µL

ε (w)) ∈ H1
g (Ω, N)

and we have

XL
ε (w) = a1(wL

ε , w
L
ε ) =

∫
Ω

aαβ

(x
ε

)
DαwL

ε (x) ·DβwL
ε (x)dx,
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where

DαwL
ε (x) = Dαw(x)−mε(x)Dα

y χ
β
k

(x
ε

)L

ηk
β(Dw(x))− rα

ε (x)

where

rα
ε (x) = ε

{
dΠn ◦Dα

x

(
mε(x)χβ

p (
x

ε
)Lηp

β(Dw(x))
)

+ HessΠn

(
mε(x)χβ

p

(x
ε

)L

ηp
β(Dw(x)),Dαw

)}
−mε(x)Dα

y χ
β
p

(x
ε

)L

ηp
β(Dw(x)) + o(ε).

By virtue of the construction of mε and properties of χβ
p , Lηj

β , we have

rα
ε → 0 in L2.

Therefore, if we set

Aα(w) = Dαw(x)−mε(x)Dα
y χ

β
k

(x
ε

)
Lηk

β(Dw(x)),

and let

Y L
ε (w) =

∫
Ω

aαβ

(x
ε

)
Aα(w) ·Aβ(w), (3.16)

we have as ε→ 0

XL
ε (w)− Y L

ε (w) → 0 ∀w ∈ H1
g (Ω, N).

But we can pass to the limit in (3.16); we obtain ( here and in the following we
always write aαβ(x) = (aij

αβ(x)) ∈Mk×k)

lim
ε→0

Y L
ε =

∫
Ω

(aij
αβ)DαwiD

βwj −
∫

Ω

(aij
αβD

β
yχ

δ
lj)

Lηl
δ(Dw(x))Dαwidx

−
∫

Ω

(aij
αβD

α
y χ

γ
pi)

Lηl
γ(Dw(x))Dβwjdx

+
∫

Ω

(aij
αβD

β
yχ

δ
ljD

α
y χ

γ
pi)

Lηp
γ(Dw(x))Lηl

δ(Dw(x))dx.

(3.17)

We then let L→∞ in (3.17), by choice of Lηβ
j , we have

lim
L→∞

lim
ε→0

Y L
ε (w) =

∫
Ω

pij
αβD

αwiD
βwjdx (3.18)

where

pij
αβ = (aij

αβ)− (akj
γβD

γ
yχ

α
ik)− (ail

αδD
δ
yχ

β
jl) + (akl

γδD
γχα

ikD
δ
yχ

β
jl).

Note
pij

αβ = a1(Pα
i , P

β
j − χβ

j ) = a1(χ
β
j − P β

j ,−P
α
i ),

(3.18) then gives
lim

L→∞
lim
ε→0

Y L
ε (w) = a(w,w). (3.19)

From the assumption that nε is a minimizer of

aε(n, n) =
∫

Ω

aαβ

(x
ε

)
Dαn(x) ·Dβn(x)dx
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in H1
g (Ω, N), we know for any L fixed,∫

Ω

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x)dx ≤

∫
Ω

aαβ

(x
ε

)
DαwL

ε (x) ·DβwL
ε (x)dx = XL

ε (w),

passing to the limit,

lim sup
ε→0

∫
Ω

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx ≤ lim
ε→0

XL
ε (w) = lim

ε→0
Y L

ε (w)

Let L→∞, using (3.19), we have

lim sup
ε→0

∫
Ω

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx ≤ a(w,w). (3.20)

On the other hand, we let zε = nε − wL
ε , we have

0 ≤ aε(zε, zε)

= aε(nε − wL
ε , n

ε − wL
ε )

= aε(nε, nε)− 2aε(nε, wL
ε ) + aε(wL

ε , w
L
ε ). (3.21)

While from lemma 3.12 and lemma 3.14, we have

aε(nε, wL
ε ) =

∫
Ω

aαβ

(x
ε

)
Dβnε(x) ·

(
Dαw(x)−mε(x)Dα

y χ
γ
p(
x

ε
)Lηp

γ(Dw(x))− rα
ε

)
dx

= aε(nε, w)−
∫

Ω

aij
αβ

(x
ε

)
mε(x)Dβnε

j(x)D
α
y χ

γ
pi

(x
ε

)L

ηp
γ(Dw(x))dx

−
∫

Ω

aij
αβ

(x
ε

)
Dβnε

j(x)r
α
εidx

→ a(n,w).
(3.22)

Plug in w = n to (3.22), together with (3.21) we have

0 ≤ lim inf
ε→0

aε(nε, nε)− a(n, n). (3.23)

We then proved
lim
ε→0

aε(nε, nε) = a(n, n).

Finally it follows from (3.20), (3.23) and (3.3) that n is a minimizing harmonic
map in H1

g (Ω, N).

In fact, we could prove the following local convergence lemma:

Lemma 3.16. Let nε be as in lemma 3.12, then there exists a subsequence nεk

and a minimizing harmonic map n ∈ H1
g (Ω, N) such that for any Br(x) ⊂ Ω, we

have ∫
Br(x)

aαβ

(
y

εk

)
Dαnεk(y) ·Dβnεk(y)dy →

∫
Br(x)

a0|∇n(y)|2dy.

Proof : Since nε is bounded in H1
g (Ω, N), we can find a subsequence nεl and

weakly harmonic map n such that nεl ⇀ n ∈ H1
g (Ω, N). Let mr

ε be a cut off
function defined as follows

mr
ε ∈ D(Br(x)),

mr
ε(y) = 0 if d(y, ∂Br(x)) ≤ ε,

mr
ε(y) = 1 if d(y, ∂Br(x)) ≥ 2ε,

ε|γ||Dγmr
ε(y)| ≤ cγ ,∀γ ∈ N, cγ depends on r, γ but not on ε. (3.24)



18 FANGHUA LIN AND XIAODONG YAN

For L fixed positive number, Lηj
β ∈ C∞(Mk×d,Mk×d) is defined by (3.15). For

any v ∈W 1,2(Br(x), N), we consider

µL
ε,r(v) = {−εmr

ε(x)χ
β
ki(
x

ε
)Lηk

β(Dv(x))}.

For ε small enough, we can define

vL
ε,r = Π ◦ (v + µL

ε,r(v)). (3.25)

Now follow the same proof as in lemma 3.15, we can prove that

lim
L→∞

lim
ε→0

∫
Br(x)

aαβ

(y
ε

)
DαvL

ε,r(y) ·DβvL
ε,r(y)dy →

∫
Br(x)

a0|∇v|2dy. (3.26)

Let aε
r(n, n) =

∫
Br(x)

aαβ(y
ε )Dαn(y) ·Dβn(y)dy, ar(u, v) =

∫
Br(x)

a0∇u · ∇v. Take
subsequence nεlk of {nεl} such that

aij
αβ

(
x

εlk

)
Dαn

εlk
i (x) ⇀ ξj

β weakly in L2(Br(x),Mk×d),

nεlk ⇀ n weakly in W 1,2(Br(x), N),

a
εlk
r (nεlk , nεlk ) → lim inf

l→∞
aεl

r (nεl , nεl). (3.27)

A similar argument as in lemma 3.12, we can show that

(ξj
β , D

βvj)r =
∫

Br(x)

ξj
βD

βvj = ar(u, v). (3.28)

Using (3.27) and (3.28), we can argue in the same way as in lemma 3.12 and
lemma 3.14 to obtain

lim
L→∞

lim
l→∞

∫
Br(x)

aij
αβ

(
y

εl

)
Dαnεl

i (y)DβvL
εlj,r

(y)dy →
∫

Br(x)

a0∇n · ∇vdy. (3.29)

On the other hand, we have

0 ≤ a
εlk
r (nεlk − nL

εlk
, nεlk − nL

εlk
)

= a
εlk
r (nεlk , nεlk )− 2a

εlk
r (nεlk , nL

εlk
) + a

εlk
r (nL

εlk
, nL

εlk
). (3.30)

By (3.26), (3.27) and (3.29), this implies

lim inf
l→∞

aεl
r (nεl , nεl) ≥ ar(n, n).

To prove
lim inf
l→∞

aεl
r (nεl , nεl) ≤ ar(n, n), (3.31)

we need to modify the argument in lemma 3.15. Since now nε does not have the
same boundary condition on ∂Br(x), we need to apply Luckhause’s lemma (2.7)
to construct suitable comparison functions. Let Br0(x) ⊂ Ω and let θ ∈ (0, 1),
δ > 0 be given. Choose any M ∈ N with lim sup

l→∞
Eεl

(nεl , r0, x) < Mδ and note

that if ε ∈ (0, 1− θ/M) we must have some integer l ∈ {2, · · · ,M} such that

r0
2−d

∫
Br0(θ+lε)(x)\Br0(θ+(l−2)ε)(x)

aij
αβ

(
y

εk

)
Dαnεk

i (y)Dβnεk
j (y)dy < δ

for infinitely many εlk , because otherwise we get that Eεl
(nεl , r0, x) > Mδ for all

sufficiently large l by summation over l, contrary to the definition of M . Thus
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choose such an l, letting r = r0(θ + (l − 2)ε) and noting that
r(1 + ε) ≤ r0(θ + lε) < r0, r ∈ (θr0, r0) such that

r0
2−d

∫
Br(1+ε)(x)\Br(x)

aij
αβ

(
y

εlk

)
Dαn

εlk
i (y)Dβnεk

j (y)dy ≤ δ

for some subsequence nεlk (for simplicity of notation, we shall denote the
subsequence by nεk from now on). Passing to the limit, we then have

r2−n
0

∫
Br(1+ε)(x)\Br(x)

|∇n|2dx ≤ δ.

By lemma 2.7, we can find wεk ∈W 1,2(Br(1+ε)(y)\Bρ(y);N) such that wεk = n in
a neighborhood of ∂Br(x), wεk = nεk in a neighborhood of ∂Br(1+ε)(x) and

r2−d

∫
Br(1+ε)(x)\Br(x)

|∇wεk |2dx

≤ Cr2−d

∫
Br(1+ε)(x)\Br(x)

(|∇n|2 + |∇nεk |2 + ε−2
k r−2|n− nεk |2)dx,

where C depends only on d,N . Now consider nL
εk,r(x) defined by formula (3.25),

i.e.
nL

ε,r = Π ◦ (n+ µL
ε,r(n))

and let

ñεk =


nεk Br0(y)\Br(1+ε)(y)
wεk Br(1+ε)(x)\Br(x)
nL

εk,r Br(x)

Then by minimality of nεk we have∫
Br(1+ε)(x)

aαβ

(
y

εk

)
Dαnεk(y) ·Dβnεk(y)dy

≤
∫

Br(1+ε)(x)

aαβ

(
y

εk

)
Dαñεk(y) ·Dβñεk(y)

≤
∫

Br(x)

aαβ

(
y

εk

)
DαnL

εk,r(y)D
βnL

εk,r(y)dy + 2
∫

Br(1+ε)(x)\Br(x)

|∇wεk |2dx.

(3.32)

By (3.26), taking limit in (3.32) gives

lim inf
l→∞

∫
Br(x)

aαβ

(
x

εl

)
Dαnεl(x) ·Dβnεl(x)dx ≤

∫
Br(x)

a0|∇n|2dx+ Cδ.

Since δ is arbitrary, (3.31) follows. Thus we can find a subsequence such that

aεl
r (nεl , nεl) → ar(n, n).�

In fact, the above argument actually proves the following statement:

Lemma 3.17. Assume sequence nεj ⇀ n in H1
g (Ω,Rk), where nε is a minimizer

of Iε in H1
g (Ω, N). Then for Br(x) ⊂ Ω, we have∫

Br(x)

aαβ

(
y

εj

)
Dαnεj (y) ·Dβnεj (y)dy → a0

∫
Br(x)

|∇n|2dy
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and we can find a subsequence nεjk such that∫
Br(x)

|Dαn
εjk
i −Dαni −Dα

y χ
β
pi

(
x

εjk

)
∂n

εjk
p

∂xβ
|2 → 0. (3.33)

Proof : Let nεjk be such that∫
Br(x)

aαβ

(
x

εjk

)
Dαnεjk ·Dβnεjk → lim inf

j→∞

∫
Br(x)

aαβ

(
x

εj

)
Dαnεj ·Dβnεj .

The previous lemma showed that∫
Br(x)

aαβ

(
x

εjk

)
Dαnεjk ·Dβnεjk →

∫
Br(x)

a0|∇n|2.

Moreover, for each L > 0 fixed, we have∫
Br(x)

∣∣∣∣∣Dαn
εjk
i −Dαni −mr

ε(x)D
α
y χ

β
ki

(
x

εjk

)L

ηk
β(Dn(x))

∣∣∣∣∣
2

≤
∫

Br(x)

aαβ

(
x

εjk

)(
Dαnεjk −mr

εjk
(x)Dα

y χ
γ
k

(
x

εjk

)L

ηk
γ(Dn(x))

)

·

(
Dβnεjk −mr

εjk
(x)Dβ

yχ
δ
k

(
x

εjk

)L

ηk
δ (Dn(x))

)
.

(3.34)

Let εjk
→ 0, then L→∞, the right hand side of (3.34) converges to

lim inf
j→∞

a
εj
r (nεj , nεj )− ar(n, n) = 0, (3.33) follows.

3.2. Hölder estimate. In this and next section, we prove some uniform small
energy estimates on nε. More precisely, we have

Theorem 3.6. There exists a constant δ0 independent of ε such that for any
Br(x) ∈ Ω, and any minimizer nε of Iε satisfying

Eε(nε, r, x) =
1

rn−2

∫
Br(x)

aij
αβ(

x

ε
)Dαnε

iD
βnε

jdx ≤ δ0

then nε ∈ Cβ(B r
2
(x)) for all β < 1.

We prove the theorem following the compactness argument developed by
Avellenda and Lin for linear elliptic system (See [AL1, AL2, AL3]) . Namely, we
prove the uniform Hölder estimate in three steps.
Step 1. Show that there exist constants θ ∈ (0, 1), µ ∈ (0, 1), ε0, δ0 depend only on
d,N such that if

Eε(nε, 1, 0) ≤ δ0,

then for ε ≤ ε0,
Eε(nε, θ, 0) ≤ θ2µEε(nε, 1, 0)

This step follows directly from the small energy estimates for minimizing
harmonic maps and the strong convergence results of Eε(nε, r, 0) by lemma 3.17.

Step 2. A recursive argument of the step 1 implies

Eε(nε, r, 0) ≤ r2µEε(nε, 1, 0)

for all r ≥ ε
ε0

.

Step 3. Blow up argument in ε scale.
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Before we present the lemmas, we specify that from now on, by a minimizer of
I(n) =

∫
B
aαβD

αn ·Dβn we mean I(n) ≤ I(m) for any m ∈ H1(B,N) with m− n
compactly supported in B.

Lemma 3.18. For any 0 < µ < 1, there exist θ, 0 < θ < 1, and ε0, δ0 > 0
depending only on d and N , such that if nε is a minimizer of
Iε =

∫
B2(0)

aij
αβ(x

ε )Dαni(x)Dβnj(x)dx with∫
B1(0)

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx ≤ δ0,

then for all ε ≤ ε0,

1
θd−2

∫
Bθ(0)

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx ≤ θ2µ

∫
B1(0)

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx.

(3.35)

Proof : Suppose µ < µ′ < 1. Were (3.35) false, then for any fixed θ ∈ (0, 1), δ > 0
which will be chosen later, we could find minimizers nεk of Iεk

satisfying∫
B1(0)

aij
αβ(

x

εk
)Dαnεk

i D
βnεk

j ≤ δ,

yet

1
θd−2

∫
Bθ(0)

aij
αβ(

x

εk
)Dαnεk

i (x)Dβnεk
j (x)dx > θ2µ

∫
B1(0)

aij
αβ(

x

εk
)Dαnεk

i (x)Dβnεk
j (x)dx.

(3.36)
By the homogenization limit lemmas 3.12 and 3.15, we know there exists a
subsequence (for simplicity, we denote by nk) such that nk is a minimizer of Iεk

and nk ⇀ n where n is a minimizing harmonic map and∫
Bθ(0)

aij
αβ

(
x

εk

)
Dαnk

i (x)Dβnk
j (x)dx→ a0

∫
Bθ(0

|∇n|2dx,

∫
B1(0)

aij
αβ

(
x

εk

)
Dαnk

i (x)Dβnk
j (x)dx→ a0

∫
B1(0)

|∇n|2dx,

Since n is a minimizing harmonic map, there exists a constant δ0 > 0, such that if∫
B1(0)

|∇n|2 ≤ δ0

then for θ small enough, the following holds

1
θd−2

∫
Bθ(0)

|∇n|2dx ≤ θ2µ′
∫

B1(0)

|∇n|2dx.

Now take δ = δ0
2 , pass to the limit in (3.36), a contradiction arises.

Lemma 3.19. Given µ, 0 < µ < 1, let θ, ε0, δ0 be as in lemma 3.18. Then for all
nε, nε being a minimizer of Iε, satisfying

Eε(nε, 1, 0) ≤ δ0,

for all k such that ε/θk ≤ ε0, we have

Eε(nε, θk, 0) ≤ θ2kµEε(nε, 1, 0). (3.37)
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Proof : The proof is by induction on k. k = 1 is exactly the conclusion of lemma
3.18. Now let k satisfying ε/θk ≤ ε0 and suppose (3.37) holds. Define

wε(z) = nε(θkz).

Then wε ∈ H1(B1(0), N) and from (3.37)∫
B1(0)

aαβ

(
θkz

ε

)
Dαwε(z) ·Dβwε(z)dz =

1
θ(d−2)k

∫
B

θk (0)

aαβ

(y
ε

)
Dαnε(y) ·Dβnε(y)dy

≤ δ0.

(3.38)

and wε is a minimizer of
∫

B2(0)
aαβ

(
θkz
ε

)
Dαn(z) ·Dβn(z)dz. Apply lemma 3.18

to wε, we obtain

1
θd−2

∫
Bθ(0)

aij
αβ

(
θkz

ε

)
Dαwε

i (z)D
βwε

j(z)dz ≤ θ2µ

∫
B1(0)

aij
αβ

(
θkz

ε

)
Dαwε

i (z)D
βwε

j(z)dz.

(3.39)
Rewriting (3.39) using (3.38) we see that

1
θ(d−2)(k+1)

∫
B

θk+1 (0)

aij
αβ

(y
ε

)
Dαnε

i(y)D
βnε

j(ydy)

≤ θ2(k+1)µ

∫
B1(0)

aij
αβ

(x
ε

)
Dαnε

i(x)D
βnε

j(x)dx.

Remark 3.4. Note that to repeat the above recursive argument for any fixed ball
B(x, r) ⊂ Ω, we actually need modify lemma 3.18 into following version:

Lemma 3.20. Suppose nε is a minimizer of
∫

B2(0)
aαβ(x+x0

ε )Dαn ·Dβn, x0 is a
fixed point in Rd. Then we can find δ0 independent of x0, n

ε, such that if∫
B1(0)

aαβ

(
x+ x0

ε

)
Dαnε ·Dβnε ≤ δ0,

then
1

θd−2

∫
Bθ(0)

aαβ

(
x+ x0

ε

)
Dαnε ·Dβnε ≤ θ2µ

∫
B1(0)

aαβ

(
x+ x0

ε

)
Dαnε ·Dβnε.

Proof : The proof amounts to a strong convergence of the corresponding energy
independent of base point x0. For this purpose, we need only to modify the
correctors by the same translation. i.e. we choose correctors by
mr

ε(x+ x0)Dyχ(x+x0
ε )∇n(x), then we obtain the same energy convergence results.

The rest is similar. The same argument applies to the recursive argument for
Lipschitz estimate in the next section.

The next lemma constitutes a priori interior Hölder estimate for minimizers of∫
aαβ(x

ε )Dαn ·Dβn. For simplicity, we state it for minimizers on B1(0), the most
general case will follow by localization and scaling arguments.

Lemma 3.21. Given µ, 0 < µ < 1, there exists δ0 > 0 depending only on d,N ,
such that if nε is a minimizer of

∫
B2(0)

aij
αβ(x

ε )DαniD
βnj satisfying∫

B1(0)

aαβ

(x
ε

)
Dαnε ·Dβnε ≤ δ0,
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then there exists a constant C depending only on d,N, µ such that

[nε]C0,µ(B 1
2
(0)) ≤ C

∫
B1(0)

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x)dx.

Proof : We denote by C a generic constant depending on d,N, µ possibly
changing from one estimate to another. From lemma 3.19, we conclude that for
all r ≥ ε/ε0,

1
rd−2

∫
Br(0)

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x) ≤ Cr2µ

∫
B1(0)

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x).

(3.40)
We take r = 2ε/ε0 in (3.40) and define the new function

wε(x) = nε(εx) x ∈ B 2
ε0

(0). (3.41)

Then wε is a minimizer of I1 =
∫

B 2
ε0

(0)
aαβ(x)Dαn ·Dβn. From the small energy

estimates in section 2, we conclude that there exists a δ1 > 0, such that if∫
B 2

ε0
(0)

aαβ(x)Dαwε ·Dβwε ≤ δ1,

then

sup
|x|< 1

ε0

sup
0<r< 1

ε0

1
rn−2+2µ

∫
Br(x)

aαβ(x)Dαwε(x) ·Dβwε(x)

≤ C
1

εd−2
0

∫
B 2

ε0
(0)

aαβ(x)Dαwε(x) ·Dβwε(x)dx (3.42)

Setting s = rε, plug (3.2) into (3.42) we see that

sup
|x|< ε

ε0

sup
0<s< ε

ε0

1
sn−2+2µ

∫
Bs(x)

aαβ

(x
ε

)
Dαnε ·Dβnε

≤ C

∫
B ε

ε0
(0)

aαβ

(x
ε

)
Dαnε(x) ·Dβnε(x). (3.43)

If we combine (3.40) and (3.43) and small energy estimates from theorem 2.1, the
conclusion follows for all ε.

Remark 3.5. It can be checked that when aαβ is bounded measurable, we still
have the strong convergence of energy and the homogenization limit is a
minimizing harmonic map. We thus conclude that the above uniform Hölder
estimates holds for general case.

In fact, if we have the monotonicity formula or assume N is simply connected, we
can prove the following interesting lemma from the uniform Hölder estimates.

Corollary 3.1. (Singular points converge to singular points). Suppose nε is a
sequence of minimizers of Iε =

∫
Ω
aαβD

αn ·Dβn in H1
g (Ω, N) converges weakly to

n in H1
g (Ω, N). Assume N is simply connected or monotonicity formula holds for

nε with a uniform constant, then
(1) If yε is a singular point for nε such that yε → y ∈ Ω, then y is a singular

point for n.
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(2) If y ∈ Ω is a singular point for n, then for all sufficiently small ε, nε has a
singular point at some yε with yε → y.

Proof : Consider (1). By previous results, we know n is a minimizing harmonic
map in H1

g (Ω, n). If y is not a singular point of n, then for r > 0 small enough, we
have

1
rd−2

∫
Br(y)

a0|∇n|2 ≤
δ0
2d
,

here δ0 is given by lemma 3.21. By energy convergence result, we know for ε small
enough,

1
rd−2

∫
Br(y)

aαβ

(x
ε

)
Dαnε ·Dβnε ≤ δ0

2d−2
.

On the other hand, for ε small enough, we have yε ∈ B r
4
(y), hence

1
( r
2 )d−2

∫
B r

2
(yε)

aαβ

(x
ε

)
Dαnε ·Dβnε ≤ 2d−2 1

rd−2

∫
Br(y)

aαβ

(x
ε

)
Dαnε ·Dβnε ≤ δ0,

by lemma 3.21, yε is a regular point of nε, a contradiction.
With regard to (2). If the conclusion were false, we could find a r and a
subsequence nεk such that there are no singular points of nεk in Br(y). Without
loss of generality, we may assume y = 0. From Lipschitz estimates lemma 2.6 plus
the assumption that monotonicity formula holds or N is simply connected, one
obtains a uniform bound on |∇nεk |L∞(B r

2
(0)). For any δ > 0, when r small

enough, we have 1
rd−2

∫
Br(0)

aαβ

(
x
εk

)
DαnεkDβnεk ≤ δ. From strong convergence

of the energy, we conclude 1
rd−2

∫
Br(0)

a0|∇n|2 ≤ δ. When δ is small enough, this
implies 0 is a regular point of n. A contradiction. �

In fact, if we assume aαβ(x) to be continuous, we can consider the homogenization
problem

min
∫

Ω

aαβ

(x
ε

)
Dαn ·Dβn (3.44)

and study the asymptotic behavior of minimizer nε as ε approaches zero. One can
check easily that the theorem 3.6 continues to hold in this case. Moreover, nε

converges weakly to a minimizing harmonic map n ∈ H1(Ω, N). Recall from
Schoen and Uhlenbeck’s result (see [SU1]) the singular set of nε is of dimension
d− 3, in particular, when d = 3, the singular set of nε is discrete. Later Almgren
and Lieb ([AL]) obtained a uniform bound (depends only on geometry of Ω and
the energy of the boundary function of n) for the number of singular points of a
minimizing harmonic map n from Ω ⊂ R3 onto S2. In particular, they have the
following theorem on uniform distance between singular points:

Theorem 3.7. [[AL]] Theorem 2.1] Suppose n is a minimizing harmonic map
from Ω ⊂ R3 into S2 having a singularity at y ∈ Ω. Let D denotes the distance
from y to ∂Ω. Then there is a universal constant C independent of Ω, n,D, y etc
such that there is no other singularity within distance CD of y.

As an application of our uniform small energy estimates, we obtain the following
theorem on the uniform bound for the number of singular points of nε.

Theorem 3.8. Let aαβ(x) be continuous, we consider the homogenization (3.44)
for N = S2 when d = 3. Then the total number of singular points Nε of nε is
bounded above by some l independent of ε.
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Proof : Choose a subsequence nεk which converges weakly to n ∈ H1
g (Ω, S2), then

n is a minimizing harmonic map and the singular points of nεk converges to
singular point of n. Note singular points of n are isolated and the total number of
singular points is bounded above by a constant depending only on d, g and the
geometry of Ω. Let p be a singular point of n, then there exists r depending only
on d, g,Ω such that there is no other singular point of n in Br(p). Without loss of
generality, we assume p = 0. Since singular points of n are limits of nεk , we can
always find singular points pk of nεk such that pk → 0. We claim there exists a
L > 0 such that for k large enough, all singular points of nεk close to 0 lie in
B(0, Lεk). Otherwise for a subsequence (we still denote by nεk), we can always
find a singular point pk of nεk with |pk| = δk → 0 and εk

δk
→ 0. Choose δ > 0, we

consider wεk = nεk( δkx
δ ). Then wεk is a minimizer of

∫
B2(0)

aαβ( δkx
εkδ )Dαn ·Dβn

with ∫
B1(0)

|∇wεk |2 ≤ C.

The bound follows from the energy bound in lemma 2.10.
Since εkδ

δk
→ 0, we can argue as before and show that up to a subsequence wεk

converges weakly to a minimizing harmonic map w and∫
Br(0)

aαβ

(
δkx

δεk

)
Dαwεk ·Dβwεk →

∫
Br(0)

a0|∇w|2 (3.45)

for any r ≤ 1
2 . Note each wεk has a singular point qk on ∂Bδ(0). By corollary 3.1,

we know qk converges to a singular point q of w. On the other hand, we note 0 is
also a singular point of w. In fact, if 0 is a regular point of w, then for some r
small enough, we have

r2−d

∫
Br(0)

a0|∇w|2 ≤
1
2
δ0.

Here δ0 is a small constant as in lemma 3.21. By strong convergence of energy
(3.45), we conclude that for k large enough, we have

r2−d

∫
Br(0)

a

(
δkx

δεk

)
|∇wεk |2 ≤ δ0,

which implies that (
rδk
δ

)2−d ∫
B rδk

δ

(0)

a

(
x

εk

)
|∇nεk |2 ≤ δ0.

By uniform energy estimates lemma 3.21 and corollary 3.1, we conclude 0 is a
regular point of n, a contradiction to our choice of 0. Therefore w has a singular
point at 0 and ∂Bδ(0). Since w is a minimizing harmonic map from B1(0) into
S2, for any singular point p of w lies in B 1

2
(0), we conclude from theorem 3.7

there exists a r independent of w, such that there are no other singular points of
w in Br(p). If we take δ small enough, that would be a contradiction. Therefore
there exists a L such that all singular points of nεk close to 0 lies in BLεk

(0) for k
large enough.
The conclusion of the theorem now follows easily. In fact, modify the proof of
theorem 2.1 in [AL] slightly, one can show that at ε scale the distance between the
singular points of nε is given by Cε with C independent of nε. Hence there are M
singular points of nε in BLε(p) for each singular point p of n, with M independent
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of ε. Since there are N singular points, there are at most MN singular points of
nε in Ω with MN independent of ε. �

3.3. Gradient Estimates. In this section, we use the three step compactness
method to prove L∞ estimates on gradients of minimizers. In this section, χβ

ki

always denote the corrector defined in (3.1). mr
ε(x) is defined as in (3.24).

Lemma 3.22. Given µ ∈ (0, 1), we can find θ ∈ (0, 1) δ0, ε0 > 0 depending only
on d,N, µ such that the following statement is true: If nε is a minimizer of∫

B2(0)
a(x

ε )|∇n|2dx with ∫
B1(0)

a
(x
ε

)
|∇nε|2 ≤ δ0,

then for ε ≤ ε0, we have

1
θd−2

∫
Bθ(0)

a
(x
ε

)
|∇nε|2dx ≤ θ2µ

∫
B1(0)

a
(x
ε

)
|∇nε|2dx. (3.46)

and

−
∫

B θ
2
(0)

|∇nε(x)−Aε
θ/2(x)−∇nε

B θ
2
|2dx ≤ θ2µ−

∫
B 1

2
(0)

|∇nε(x)−Aε
1
2
(x)−∇nε

B 1
2
|2dx+θ2µ,

(3.47)
where Aε

θ = (Aεα
θ,i) ∈Mk×d, Aεα

θ,i = Dα
y χ

β
ki(

x
ε ) ∂nε

∂xβ Bθ
.

Proof : (3.46) follows from lemma 3.18. We prove (3.47). If (3.47) fails, then for
any fixed µ, θ ∈ (0, 1), δ > 0 which will be chosen later, there would exist εk ↓ 0
and nεk such that nεk is a minimizer of

∫
B2(0)

a( x
εk

)|∇n|2dx with∫
B1(0)

a

(
x

εk

)
|∇nεk |2 ≤ δ,

but

−
∫

B θ
2
(0)

|∇nεk −Aεk
θ
2
−∇nεk

B θ
2 (0)|

2dx > θ2µ−
∫

B 1
2
(0)

|∇nεk −Aεk
1
2
−∇nεk B 1

2
|2dx+ θ2µ.

(3.48)
From lemma 3.12 and lemma 3.17, we can find a subsequence (we still denote by
nεk) and a minimizing harmonic map n ∈ H1(B2(0), N) such that

nεk ⇀ n weakly in W 1,2(B2(0))

and ∫
B1(0)

a

(
x

εk

)
|∇nεk |2 →

∫
B1(0)

a0|∇n|2,∫
Bθ(0)

a

(
x

εk

)
|∇nεk |2 →

∫
Bθ(0)

a0|∇n|2,∫
B θ

2
(0)

|∇nεk −∇n−∇yχ
(x
ε

)
∇n|2 → 0,

∫
B 1

2
(0)

|∇nεk −∇n−∇yχ
(x
ε

)
∇n|2 → 0.
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On the other hand, from the small energy estimates for minimizing harmonic
maps, we know there exists δ0 > 0 depending only on d,N such that if n is a
minimizing harmonic map and∫

B1(0)

a0|∇n|2 ≤ δ0,

then n ∈ C∞(B 1
2
(0)). In particular, we have

−
∫

B θ
2
(0)

|∇n−∇nB θ
2
(0)|2 ≤ Cθ2 −

∫
B 1

2
(0)

|∇n−∇nB 1
2
(0)|2.

Note

−
∫

B θ
2
(0)

|∇nεk −∇nεk B θ
2
−∇yχ

(x
ε

)
∇nεk B θ

2
|2

≤ −
∫

B θ
2
(0)

|∇nεk −∇nεk B θ
2
−∇yχ

(x
ε

)
∇n|2 + C −

∫
B θ

2
(0)

|∇n−∇nεk B θ
2
|2

≤ −
∫

B θ
2
(0)

|∇n−∇nB θ
2
(0)|2 + C −

∫
B θ

2
(0)

|∇n−∇nB θ
2
(0)|2 +O(εk)

≤ Cθ2 −
∫

B 1
2
(0)

|∇n−∇nB 1
2
|2 + Cθ2 +O(εk)

≤ Cθ2 −
∫

B 1
2
(0)

|∇nεk −∇nεk B 1
2
−∇yχ

(x
ε

)
∇nεk B 1

2
|2 + Cθ2 +O(εk).

Therefore if we take θ small enough such that Cθ2 ≤ θ2µ, pass to the limit in
(3.48), a contradiction follows.

Lemma 3.23. Let µ, θ, ε0, δ0 be as in lemma 3.22. Suppose nε is a minimizer of∫
B2(0)

a(x
ε )|∇n|2. If ∫

B1(0)

a
(x
ε

)
|∇nε|2 ≤ δ0,

then for all k satisfying ε
θk ≤ ε0,

1
θ(d−2)k

∫
B

θk (0)

a
(x
ε

)
|∇nε|2 ≤ θ2kµ

∫
B1(0)

a
(x
ε

)
|∇nε|2 (3.49)

and

−
∫

B
θk
2

(0)

|∇nε −∇yχ
(x
ε

)
∇nε

B
θk
2

−∇nε
B

θk
2

|2dx

≤ θ2kµ −
∫

B 1
2
(0)

|∇nε −∇yχ
(x
ε

)
∇nε

B 1
2
−∇nε

B 1
2
|2dx+ θ2µ 1− θ2kµ

1− θ2µ
.(3.50)

Proof : The proof is by induction on k. k = 1 is exactly the conclusion of previous
lemma. Now let k satisfying ε/θk ≤ ε0 and suppose (3.49) and (3.50) hold. Define

wε(z) = nε(θkz). (3.51)
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Then wε is a minimizer of
∫

B2(0)
a
(

θk

ε

)
|∇w|2 satisfying∫

B1(0)

a

(
θkx

ε

)
|∇wε|2 =

1
θ(d−2)k

∫
B

θk (0)

a
(x
ε

)
|∇nε|2 ≤ θ2kµ

∫
B1(0)

a
(x
ε

)
|∇nε|2 ≤ δ0.

Apply lemma 3.22 to wε, we obtain

1
θd−2

−
∫

Bθ(0)

a

(
θkx

ε

)
|∇wε|2 ≤ θ2µ

∫
B1(0)

a

(
θkx

ε

)
|∇wε|2 (3.52)

and

−
∫

B θ
2
(0)

|∇wε −∇yχ

(
θkx

ε

)
∇wε

B θ
2
−∇wε

B θ
2
|2

≤ −
∫

B 1
2
(0)

|∇wε −∇wε
B 1

2
−∇yχ

(
θkx

ε

)
∇wε

B 1
2
|2 + θ2µ (3.53)

Rewrite (3.52) and (3.53) utilizing (3.51) and (3.49), we have
1

θ(d−2)(k+1)

∫
B

θk (0)

a
(x
ε

)
|∇nε|2 ≤ θ2(k+1)µ

∫
B1(0)

a
(x
ε

)
|∇nε|2

and

−
∫

B
θk+1

2
(0)

|∇nε(x)−∇yχ
(x
ε

)
∇nε

B
θk+1

2

−∇nε
B

θk+1
2

|2

≤ θ2(k+1)µ −
∫

B 1
2
(0)

|∇nε −∇yχ
(x
ε

)
∇nε

B 1
2
−∇nε

B 1
2
|2 + θ2µ 1− θ(2k+1)µ

1− θ2µ

The next lemma constitutes a priori interior Lipschitz estimate for minimizers of∫
Ω
a
(

x
ε

)
|∇nε|2. For simplicity, we state it for minimizers on B1(0), the most

general case will follow by localization and scaling arguments.

Lemma 3.24. There exists δ0 > 0 depending only on d,N satisfies the following:
if nε is a minimizer of

∫
B2(0)

a(x
ε )|∇n|2 satisfying∫

B1(0)

a
(x
ε

)
|∇nε|2dx ≤ δ0,

then there exists a constant C depending only on d,N, µ such that

| ∇nε |L∞(B 1
2
(0))≤ C

(∫
B1(0)

|∇nε|2
) 1

2

Proof : We denote by C a generic constant depending on d,N possibly changing
from one estimate to another. Let k be such that

ε/θk ≤ ε0 < ε/θk+1.

Substituting this k into lemma 3.23 we see that

−
∫

B ε
ε0

(0)

|∇nε −∇yχ
(x
ε

)
∇nε

B
θk
2

−∇nε
B

θk
2

|2

≤ C

(
ε

ε0

)2kµ

−
∫

B 1
2

|∇nε −∇yχ
(x
ε

)
∇nε

B 1
2
−∇nε

B 1
2
|2 + C.
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From which it follows

−
∫

B ε
ε0

(0)

|∇nε −∇nε
B ε

ε0
|2 ≤ C

(
ε

ε0

)2µ

−
∫

B 1
2
(0)

|∇nε −∇nε
B 1

2
|2 + C(−

∫
B 1

2
(0)

∇nε)2

≤ C1ε
2µ + C2. (3.54)

Let wε(x) = nε(εx), then wε is a minimizer of
∫

B2(0)
aαβD

αn ·Dβn. Rescaling
(3.54) we have

−
∫

B 1
ε0

(0)

|∇wε −∇wε|2 ≤ C1ε
2+2µ + C2ε

2.

From Lipschitz estimates for minimizers of
∫

B1(0)
a(x)|∇n|2, we know

| ∇wε |L∞(B 1
2ε0

(0)) ≤ C(−
∫

B 1
ε0

(0)

|∇wε −∇wε|2 + (−
∫

B 1
ε0

(0)

∇wε)2)
1
2

≤ Cε2+2µ + Cε2 (3.55)

Rewrite (3.3) in terms of nε, we have

|∇nε|L∞(B ε
ε0

(0)) ≤ C

(∫
B1(0)

|∇nε|2
) 1

2

.
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[Mu] F. Murat: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 5

(1978), 485-507.

[Sh] Y. Shi: A partial regularity result of harmonic maps from manifolds with bounded
measurable riemannian metrics. Comm. Anal. and Geom. Vol 4, No 1, 121-128, 1996.

[Si] L. Simon: Theorems on Regularity and Singularity of Energy Minimizing Maps.
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