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A TYPE OF HOMOGENIZATION PROBLEM

Fanghua Lin and Xiaodong Yan

Courant Institute

1. Introduction. We consider the following homogenization problem (For relevant
discussions, see [BK, L1]). Let 2 be a smooth bounded domain in R¢ with a periodic
structure, Qg is a periodic subdomain of 2 with || = || for some given constant
v > 0. N is a smooth compact submanifold of R*. We consider

min/ Gap (f) D%n¢(z) - DPnf(z)dx
Q €

subject to, with constants 1 < «a, 8 <d, ¢; >0, ¢; +¢c2 > 0,

aaﬁ(x) = 6&5(01 + C2XQO)Ik € Mka§
nc:Q — N, nflaq = g.

Here M**F being the set of all k x k matrices, I, is the identity matrix on R¥.

The question we are concerned is the regularity for n¢ and the asymptotic be-
havior as € tends to zero. The problem can be viewed as an analogue of the usual
I’ convergence type problem (see for example, [Ms]) onto curved targets. Due to
this constraint in the target, we need to apply techniques used for harmonic maps
to construct comparison functions in proving the homogenization limit. We follow
the ideas in [ALI] to obtain uniform small energy Holder estimates and Lipschitz
estimates. Such uniform Hélder or WP estimates were also found in [C] for some
different nonlinear homogenization problems using rather different approaches.

The paper is designed as follows. In section 2, we prove partial regularity result
of minimizer n¢ for fixed e. We obtain a similar estimates on the size of the singular
set as for minimizing harmonic maps. In section 3, we prove the homogenization
limit theorem and uniform apriori estimates of n. independent of e. We also point
out an interesting application of our uniform estimates to obtain a uniform bound
on the number of singularities of n¢ in a special case.

2. Regularity of n¢. Let  be a bounded smooth domain of R?, A C Q is a
smooth subset of Q with |A| = v|Q|, N is a smooth compact submanifold of R¥.
We consider the following minimization problem:

min {/ aagDo‘n . Dﬁndaj,n S Hl(Q,N),an = g} , (21)
Q

where
aag(lL') = 504&(1 + XA)Ik S Mka.
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The existence of a minimizer is standard. For simplicity of notation, we define
H;(Q,N) = {n € H'(Q,R*),n(z) € N a.e. and n|pq = g}

and we are interested in obtaining some regularity results for the minimizer.

First we derive the Euler-Lagrange equation for a minimizer. Let N, = {z €
R*, dist(x, N) < €} be a small tubular neighborhood of N on which nearest point
projection IT onto N is well defined. Consider n + s where £ = (£1,&2,-++ ,&k) €
C§° (92, R¥). For s small enough, n + s¢ lies in N, and the following mapping

n® =Tlo (n+ sf)
is an admissible mapping with
Dn® = D%n + s(dIl,, o D¢ + HesslL, (€, D%n)) + o(s).

Therefore

d d
= — | a_ Y= —|._ aps . B,
0 d8|S_OE(n ) ds\s_o/ﬂaa,@(x)D n®(x) - D’n®(z)dz

=2 /Q aop()Dn(2) - dIL,, (DPE(x)) + aap(x)Dn(z) - HessIl,, (&, Dn)

=2 /Q aap()Dn - DPE — anp(x) (A, (DY, DPn)) - €

d
- 2/9 Z {(T+xa)D% - D€ — (14 xa)An(Dn, D%n) - £} =0,  (2.2)
a=1

here A, is the second fundamental form of N at n(z).
Partial regularity result for n then follows from a more general theorem:

Theorem 2.1. [Theorem 1 and 2, [Sh]] Let Q C R? be a smooth open set, E =
Jo @apDn - DPn, ans(x) € L™ satisfying A1y < anp(z) < Aly, where A is
a positive constant, I is the d x d unit matriz. Assume N is a smooth compact
Riemannian manifold, n is an E-minimizing map from Q to N, then there exists
a €= ¢e(A) > 0 such that if r>=¢ fBr(a:) |Vn|? <€, then n € C*(Bz(x)) for some
0 < a < 1. Thus n is locally Hélder continuous outside a relatively closed subset
8, of Q. Moreover, H'=2(8,,) = 0.

Meyers’ example ([Gi]) show that C* regularity for general case is optimal. For
our case, the coefficient is piecewise constant, we can actually prove the following
lipschitz partial regularity result.

Theorem 2.2. Let ang = 5a5(01 +eaxa), ¢c1 >0, ¢c1 +co > 0 are given constants.
Then any E—minimizing map n is locally lipschitz continuous on Q\S,,.

The proof of theorem 2.2 depends on a standard blow up argument and the
observation that Vn € LY for some p > 2. Our analysis uses strong convergence
of the blow up coefficients. We remark that the same arguments therefore is also
applicable to the case when a,g is piecewise continuous but would fail in general
case when a,p are merely bounded and measurable.

The lipschitz regularity theorem follows from small energy estimates. An im-
portant ingredient in proving small energy estimates is the following monotonicity
formula. For simplicity of notation, we shall always assume ang = 005(1 + x4).
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Denote
1
E(n,rz) =5 / aap(y)Dn(y) - D’n(y)dy
r B, (x)
1
= a3 / (14 xa)[Vn(y)[Pdy, (2.3)
r B, (x)
we have

Lemma 2.1. There are constants ¢ and Ry depending only on d, A such that

E(n,r,z) < cE(n, R, x) (2.4)

for any x € Q, Br(x) C Q and all r < R < Ry.

Proof of Lemma 2.1: Note the lemma is trivial for d = 2, we assume d > 2.

CASE I: Br(z) C A or Br(z) C Q\ A. We prove the case when Bgr(z) C Q\ A,
the other case is proved in the same way. For o € (r, R), take comparison map
defined by

wla) = { M TS (25)

By minimality of n, we have

Lol = [ qexamnP < [ qaewof= [ v
Bo () Bo () Bo () Bo ()

2
—@-27 ([ qeap- [ S,
0B, () 0B, () or
which is
2
d
0< 027(1/ % < o 027‘1/ |Vn|?dy |, Vo € (r, R). (2.6)
|z|=c | OT d Bo ()

Integrate (2.6) from r to R, we have

TH/ |Vn|2dy§R2’d/ |Vn|2dy.
B, (z) Br(z)

CaASE II: z € 9A, there exists a Ry depending only A such that AN B(x, Ry) can
be expressed as a graph of a C? function for any x € A. Moreover, Ry can be
chosen in such a way that there exists a A > 0, ARy < %, for any

w € HY(B(x, Ry),R¥) and any o < Ry,

(1-\o) / (L ) [V < /
B, () +

Bﬂ(m)

(1xa)Vul < (143) [ (L) IVul,

B, (x
(2.7)
For R < Ry and any o € (r, R), let

wla) = { B = (28)
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By minimality of n and (2.7) we have
(1=20) [ @exa)OnP < [ ()P
B () By (x)

g/ (14 xa) Vo2 < (1 +Aa>/
Ba(z)

(1+ xga )| Vg |
Bo () *

0
(1+ XRi) o

— (14 A0)(d=2) o [/8 (14 xpe )| V[ - /

B, (x) OB, (z)

This implies

d 2—d 2(d—2 /
— 1+ \o)2(d=2) 1+ Vn|?
o {0 ( o) Ba(w)( X )|Vn

> 0_27d(1+>\0_)2(d72)/

on
1 —12>0. 2.
Ui 20 (29)

Integrate (2.9) from r to R, we obtain

r2*d(1+Ar)2<d*2>/ (1 X )| Vnf? gRQ*d(1+AR)2(d*2)/ (1 X ) V2.

B, (x) Bpgr(x)
(2.10)
(2.10) together with (2.7) gives
P21 4 \p)2d=2-t / (14 x4)|Vn|?
Br(z)
< R2I(1 4 AR)24-D(1 — AR)_l/ (I+va)|Vn (211
Br(z)

Inequality (2.4) then follows from (2.11) with ¢ = 22? and Ry small enough
depending only on A.

CaSE III: z ¢ OA and |Bgr(z) N A| > 0,|Br(z) N A°| > 0. R < Ry, here Ry is as
in case II.

1) d(z,0A) > 1R,
a) If r > 1 R, then

E(n,r,z) < 4972E(n, R, z).

b) If r < 1R < d(z,A), we can apply case I to B,.(z) C Bip(x) and
obtain

1
E(n,r,z) < E(n, ZR’ z) <47 2E(n, R, z).
2) d(z,04) < iR,
a) If r > iR, we still have
E(n,r,z) < 49 2E(n, R, z).
b) If d(z,0A) <r < 1R, then we can find y € A such that
B, (z) C By, (y) C Bg(y) C Bpg(x). Hence

E(n,r,) < 2'*E(n, 2r,) < 2'*cB(n, 7 y) < 4*cB(n, R, )



A TYPE OF HOMOGENIZATION PROBLEM 5

c¢) If r <d(z,0A) =1 < 1R, then we can find y € dA such that
B, (z) C Bi(xz) C By (y) C B%(y) C Bpg(x), apply case I and case II we
have

R
E(n,r,2) <E(n,1,2) < 2/7*E(n,21,y) < cE(n, 7,y) < cB(n, R, z).
The lemma then holds for all » < R < Ry where ¢, Ry depends only on d, A. [J

Remark 2.1. For r < 1,29 € R%, let A, , = {2,290 + rz € A}. Examine the
proof of lemma (2.1) carefully, we see that the same proof shows (2.4) holds for all
n, with constants ¢, Ry independent of r < 1, zg, here n, is a minimizer of
functional I, = [ (14 xa,,,)|Vnl*. .

If we take the radial derivative term into consideration in the above argument we
can prove more. Set ng, A (z) = n(zo + Az) for A € (0,1], a(z) = 1+ x4, then

1
/ a0+ \0) Vi 2 (@) = 5 / o(2)|Vn(z)|2dz.
B1(0) Bx(z0)

Lemma 2.2. There is a sequence A; — 0, \; € (0, 1] such that ng, », converges
weakly in WH2(B1(0), N) to a limiting map n., € WH2(B1(0), N) satisfying

P20 =0 a.e. in Bi(0).

Proof: The proof follows directly from the monotonicity formula and a similar
argument as in [SUT].

From lemma 2.1 can also prove the following Cacciopoli type inequality.

Lemma 2.3. Let n be an energy minimizer of (2.1), A be a given constant, if
R* fBR(wo) |Vn|? < A for some ball Bg(zo) with closure contained in Q, then

o [P ep [ e,
Bg(y) B, (y)

for each y € B%(xo),p < %. Here C = C(d,N, A, A) > 0.

Proof: The proof of lemma 1 in section 2.8 of [Si] can be carried through in our
case with only slight changes. We refer the reader to their proof.

A direct result of the Caccioppoli’s inequality is the following reverse Holder
inequality. The proof is standard (see e.g. [Gi]).

Lemma 2.4. Let a(z) = 1+ xa. If n is a minimizer of I = [, a(x)|Vn|*dz in
H}(Q,N), Br(z) C Q and for some given A, we have R*~¢ fBR(m) a(y)|Vn|? <A,
then there exists p > 2 such that |Dn| € LT (Q) and for p < %, y € B%(I) we have

loc

1
» 3
{][ |Dn|p} <C {][ Dn2dac} )
Bg(y) B, (y)
where C,p depend only on d, N, A, A.

To show that n is locally Lipschitz continuous on Q\8,,. After a suitable
translation, rotation and scaling, it reduces to showing the following statement in
the normalized situation:
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Let A= {(z,y) € Bii—l(()) XxR:y>¢(x)} and ¢ is a OL7 function on B;l_l(())
with ¢(0) = [V¢(0)| = 0 and [[¢[[c1~ < 1, then any minimizer n of
fBl(o)(l + x4)|Vn|?dz, u is Lipschitz continuous in B1(0) C R<.

We let ||@||crv(s,) = K (1) and define K(r) = [|¢"||crv(B,), for 0 < r < 1, where
¢"(z) = Lo(rae). Thus K(r) < r7K(1), 0 <r < 1. We then have the following
statement.

Lemma 2.5. Let a(x) =14 xa, A < 1. There exists constant
00,0 € (0,1), 0 € (0,1) depending only on d, N such that for any minimizer ny of
I =[5, 0 @ )\x)\Vn\zdx satisfying

/ a(Ay)|Vna(y) Pdy < o,
B,(0)

we have

1
ﬂ/ a(Ay)|Vnyl? S/ a(Az)|Vnyl?, (2.12)
0972 JBy(0) B1(0)

and

][ Dy — Doing, (o2 < 62 7[ Dy — DPirg, (o) (2.13)
By (0) B Bl(o) 4

here D*ny = {(1+ xa,)Dany, Diny, -+, Dg_1ny}, Din = ax noi=1,---,d.
Ay = {I,)\I S A}
Proof: (2.12) follows from small energy estimates in [Sh] (Proof of theorem 1 in

[Sh]). We prove (2.13) by a blow up argument. If (2.13) were not true, there
would exist €, ng, \; such that nj is a minimizer of fQ(l + XAM)|V’I’L|2 with

/ (14 xa, )IVar> =€ 1 0 (2.14)

B1(0)

but

][ [DMeng — DXeng, (o) > 6% ][ |Dny — DMy g, (o).
By (0) 4 B (0) 1
4 4

Let

m"(z) = m, ag :][ nydx. (2.15)
€k B1(0)

Then m* is a bounded sequence in H'(B;(0), R¥). Passing to a subsequence if
necessary, we may assume m* converges weakly to m € H*(B(0,1), R¥). Since
each Ay is a scaling of A with a scaling constant smaller than one and A is a
smooth set, the perimeter P(Ay,, B1(0)) is finite and we can assume

XAx,NB1(0) = XB2 B, (0)- Since ny, is a minimizer of [, (1 + xa, v)|Vn\2, we have

/ Z 1+xa,,) “mk.Dndx = ek/ Z 1+xa,,) YA, (D*m", D*m*)nda
B1(0) 571
(2.16)

/ Z (1+ de “m - D%dx =0 (2.17)
Bl(o)a 1
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for any n € C5°(B(0,1), R¥). Subtracting (2.17) from (2.16) we find

d
/ Z {(1+XAk)Damk - D% — (1+XRd)D°‘m-D°‘n} dx
B1(0) a=1 -

d
= Gk/ Z(l + XA, ) An, (DYm*, Dem*)nd.  (2.18)
B1(0)

a=1

By (2.14) and lemma 2.4, we can find some p > 2 depending only d, N,
(7[ Vng|Pda)b < 0(][ Vg [2dz) * (2.19)
B(0,3) B(0,1)

for some constant C' depending only on d, N.
After rescaling, (2.19) reads

(][ |vmk|pdz)%g0(][ Vb [2dz) . (2.20)
B(0,2) B(0,1)

12

It follows that |[VmF| is bounded in L?(B 1(0)). Moreover, a similar argument as
in lemma 4.1 of [Ev1], we conclude that m* is bounded in LS(B% (0)) for all

1 < s < 0. Let ¢ satisfy % + % = 1. By approximation the identity (2.18) holds
for n € HY(B1(0), R¥) N LY(B1(0), R¥). We now insert n = £2(m* — m) into
(2.18). Here £ =1 in B1(0) and £ = 0 outside B%(O).

The left hand side of (2.18) is

Ly = / (1+ xa,)|Vm* — Vm|?¢? +/ (1 + xa,)VmF - ve2E(m* —m)
B;(0) B, (0)
— / (1 4+ xga ) VMF - VE2£(mF —m) + /
B (0) +

(XA, — X )V - (VP — Vm)g®
B1(0)

> / |Vm* — Vm|?dz + o(1).
B1(0)

(2.21)

The last inequality follows from the fact that m* — m strongly in L?(B;(0)),
Vm¥, Vm are bounded in LP(B(0, 3)) and x4, — Xre strongly in L(B1(0)).
The right hand side of (2.18) reads

Ry, = Ek/ Z (1 + xa,)An, (DmF, D¥m*)e2(m* — m)da
B1(0) B (0)

< el [VmF 22 [m* — m|
B (0) (2.22)

< eC {/ mGpgé} {/ £llm* — m|‘1}
B1(0) B1(0)

— 0.

]
Q=

Combine (2.21) and (2.22) we obtain

Vm* — Vm strongly in L?(B

(0)). (2.23)

1
1
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Since m is a weak solution of (2.17), we can find some « € (0, 1) such that

][ |D°m — DOm |? < C@Qa][ |D%m — DOm1 |2, (2.24)
By (0) ! B, (0) !

4 4
where D%m = ((1+ X2 ) Dam, Dym, -+, Dg—ym). Pick p <, choose ¢
sufficiently small, a contradiction will then arise from the strong convergence of
Vm* to Vm in L? and strong convergence of X4, to XR4 in L9.0J

A standard iteration argument then gives Lipschitz regularity for n. Moreover, it
gives the following estimates on the gradients.

Lemma 2.6. Let n be a minimizer of (2.1). There exists 6 > 0 such that if
= 5 @) |Vn|? <6, then n is Lipschitz continuous in By (x) with

|Vl (B, (2)) < C (rd%? fBT(x) |Vn|2) *. Here C = C(d,N).

r
2

Further more, we could reduce the dimension for the singular set of n. First we
quote the following lemmas from Simon’s lecture notes [Si], which is originally due
to Luckhause ([Lul, Lu2]).

Lemma 2.7 (Corollary 1, [Si], page 27). Let N be a smooth compact manifold
embedded in RP and A > 0. There are 6y = dp(n, N, A) and C = C(n, N, A) such
that the following hold:

(1) If we have € € (0,1) and if u € WH2(B,(y); N) with p>~" [, @ |Vul?2 <A,
and e 2" p~" pr(y) lu— Ay,p|* < 83, then there is o € (%p, p) such that there

is a function w = w. € W2(B,(y); N) which agrees with u in a
neighborhood of 0B, (y) and which satisfies

02*"/ |Dw|? < epzfn/ | Dul? + eflcp*"/ lu— Ay,
Bo(y) B (y) By (y)

2) If e € (0,60], and if u,v € WH2(B110,(y)\B,(y); N) satisfy the inequalities
(1+€)p P
2-n 2 2
P Do (DU D) < A and
e 2npn pr(1+e)(y)\Bp(y) lu —v|* < &5, then there is

w e WH2(Bya4e)(y)\B,(y); N) such that w = u in a neighborhood of
0B,(y), w = v is a neighborhood of OB(14¢),(y), and

p2—n / |Dw|2
Bp(l+5)(y)\Bﬂ(y)

< Cp27”/ (|Dul® + |Dv|*) + Cef2p7"/ lu — |
B,(14+¢)(W)\B,(y) By14+6) (W\Bp(v)

Lemma 2.8. There exists a sequence \; — 0 such that the maps ng.», defined by
Ngx; () =nla+ A\x) for z € B1(0)

converges strongly in H'(B1(0), N) to a map n, € H*(B1(0), N) which is
homogeneous of degree 0. Moreover, if dist(a,0A) > 0, then n, is a minimizing
harmonic map; if a € A, then n, is a minimizing map of fBl(o)(l + XRi)\VnF.

Proof: The argument in section 2.9 of [Si] can be carried over with only slight
modification. We refer the reader to their proof.
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Theorem 2.3. Let a(x) = (¢1 + caxa) with ¢; > 0,¢1 + ¢c2 > 0 and A being a
smooth subset of Q). Then the interior singular set 8,, for any minimizer n of
Jo a(z)|Vn|? has Hausdorff dimension less than or equal to d — 3, in particular,
8, 1s a discrete set of points when d = 3.

Proof: We can follow essentially the same argument of [SU1] section 5 or
Theorem 4.5 of [HL]. We refer readers to their papers. [

Under the additional assumption that g € C*%(9Q), we can have the following.

Theorem 2.4. Let g € CH*(9Q,N). If n is a minimizer of [(1+ x4)|Vn|? in
H; (Q, N), then the singular set 8, of n is a compact subset of the interior of Q;
in particular, n is C*® in a full neighborhood of OXQ.

Proof: Note A CC {2, the same argument in [SU2| applies in our case and the
boundary regularity of n follows. [J

In general case where aqg is only bounded and measurable, the monotonicity
formula is lacking, we can not carry out the above argument to further reduce the
dimension of §,,. Nonetheless, under additional assumptions on N, this can be
done. Assume N is a simply connected smooth compact submanifold of R¥,
aqp(z) are bounded measurable functions. We consider the regularity of a
minimizer of [, aqs(x)D%n - DPn in HL (9, N).

First we quote the following extension lemma from[HL](a simple version in the
case N = S? can be found in [HKL])

Lemma 2.9 (Theorem 6.2, [HL]). Let N be a simply connected smooth compact
submanifold of RF. If u € W42(Q, N) and a € Q, then for almost every positive
r < dist(a,00), there is a function w € WH2(B,.(a), N) such that w = u on

0B, (a) and

1

2
/ Duﬂgc{/ Vel [ |u—s|2d5} ,
B, (a) 9By (a) OBy (a)

where & € R* is arbitrary and C is an absolute constant.

Lemma 2.10. There exists a positive constant C = C(d, N) such that for any
minimizer n of [¢, a(x)|Vw|?* in H}(B1(0), N), we have the following uniform

energy bound:
[ 1w <
B’V' (0)

Proof: The proof of Theorem 3.1 in [HKL] can be carried over directly to our
case. L.

Let E= [ affﬁ(:c)DaviDﬁvjdcc,
F={3,% C Bpg closed and X C singv for some minimizer v of E}, then the
following hold (for a proof, see e.g. [L2]):

N
M for0<r<1.
1—r

Lemma 2.11. °
a) If S € F, then S N Br € F for|z| < R,0< A < R—|z].
b) F is compact under the Hausdor(f metric.
c) H"%(X) =0 forall X € F.

Note that a direct result of the lemma is that there exists a § = §(NN) > 0 such
that H"=279(X) =0 for all ¥ € J.
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3. Homogenization case. In this section, we return to the homogenization
problem. As in classical theory of homogenization, we are interested in
determining the asymptotic behavior of solutions to the above minimization
problem. Typically, this analysis amounts to the knowledge of apriori bounds on
the norms of the solutions which are valid uniformly in the small parameter ¢ and
ensure the compactness of the family {n}.~¢ in a suitable function space. Before
we prove the main results, we first introduce some notations used in this section.
We shall always use Einstein’s summation principle in this section.

1 Y\ ma
Ee(n,r,z) = Jn—2 /B ( )aa,@ <*> D%n(y) - Dﬁn(y)dy,

I. =a(n,n) = /Qaaﬁ (%) D%n(zx) - DPn(z)dz,

Y : unit cell in R?, (f) = L/ f(x)dzx,
Y1)y

(u,v) = / u - vdx.
Q
We define

W(Y)={¢l¢p € HI(Y, Rk),(b = (¢1,- -, ¢x) periodic in Y}
for ¢,¢ € H'(Y,RF), we set

ar(,1) = /Y Gap(4)D(y) - DOY(y)dy,

and we introduce

with 8 € R?)|3| = 1,1 < j < k and define
X? e W(Y), such that
a(x] =Pl )=0  Wpew(y). (3.1)

Since Xf is uniquely defined up to a constant, the following quantity is uniquely
defined )
Qs = mal(X? - Pjﬁu Xi — B) (3.2)
and
a(u,v) = /qufbDauiDﬁvjd:c.

In particular, for a;jﬂ(x) = 6%(e1 + caxay, )das, the above equality (3.1) and (3.2)
gives N
Qs = 406730 (3.3)
for some constant ag > 0 uniquely determined by c1, co and .
Remark 3.2. Note that quﬁ can be given an “adjoint” form. We define
ai(6,0) =ar(v,0) Vi, ¢ € H'(Y,RY),
and we define X? * by

ai(x =Pl y)=0  wpew(y).
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We then have the formula (See e.g. [BLP])
17 1 * (. Quk o *
qajg = m%(Xi - B ,xf - Pjﬂ)' (3.4)

We shall also need some standard results and notations from [BLP]. We denote

4= g (o (D o)

We expand A¢ = e 24, + e 1Ay + VA3, where
0 . 0
Ay = -2 (gt )L
1 8ya (a/aﬁ(y) ayﬁ) )

9 (i 2 -9 (i O
A2 = 6ya (aaﬁ(y) 81"8) O (U/a[i(y) ayﬁ) )

A* denotes the adjoint operator of A.

3.1. Homogenization limit. In this section, we prove the following theorem
about the homogenization limit.

Theorem 3.5. For any sequence {n°}, where n® is a minimizer I., there exists a
subsequence n such that n converges weakly to a minimizing harmonic map n
n Hg1 (2, N). Moreover, there exists some constant ag > 0 uniquely determined by
a®? such that

x

lim [ aqp ( ) D%n¢ - DPpfdx — ao/ |Vn|?,
e—0 Jo € Q

We shall prove the theorem in two steps. First we show that n is a weakly
harmonic map (lemma 3.12), we then show that n is a minimizing harmonic map
and the energy convergence results (lemma 3.15).

Lemma 3.12. For any sequence of {n}, n¢ being a minimizer of I in
Hg1 (2, N), there exists a subsequence n such that n® converges weakly in
H}(Q, N) to a weakly harmonic map n.

Proof: Let ¢ be a subsequence such that

/ aag <$> Denet . DBpe liminf/ Aop (E) Dnc - DPnc.
Q €] e—0 Q €

By assumption we have

|Vne|? < / Aop (x) Dn - DPpeidy < 2 |Vn!2dr < C.
Q Q Q

€
Therefore n is a bounded sequence in H £%(Q, R¥), hence a subsequence (we still
denote by n ) converges weakly in H}(Q,R¥), strongly in L?(Q, R*) and
pointwise almost everywhere to n € H, 91 (2, RF). Since n is a minimizer of
Jo aap(Z)Dn - DPndz in H}(Q,N), n is a weak solution of the following
Euler-Lagrange equation:

—pF <aaﬁ (x> Dene (x)) = aap <x> (Aper (D0, DPnet)).

€] €1
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To illustrate the main idea, from now on, we assume N = S”, the general target
case could be proved similarly (though technically more complicated). In this
case, n¢ is a weak solution of

—div((e1 + c2xq,, )Vnj') = (e1 + CQXQEZ)|vn€L|2n§l7 1<j<k. (3.5)

Here Q. = {z, £ € Qo}.
Following the idea of [Ev1], we write equation (3.5) in the form

—div((c1 + caxQ., )anl) =(c1 + c2XQ., )| Vn© |2’Il§l

d k €
ont (Onc onét
— q q € _ J €]
-2 Yo [t {5 - 5]

Let

oxr™ i Oxe 4
then from the following lemma 3.13, one concludes that b% = {b‘e”a} satisfies
div(b¥) = 0 weakly for each 1 < ¢,j < k. Denote aqg(x) = (afljﬁ(x))7 set

5;,8 = GZB (E) Dan,f,

we see le 5 1s bounded in L?(2). Therefore we can extract a subsequence, we still

. ont ons
b9 = (e + cm>{ €y n} (3.6)

denote by dl 3 for simplicity of notation, such that
I 5= & weakly in L*(9).

Taking into account that n¢ is bounded in L> and converge strongly in L? to n,
we obtain

b o — &amj — Elng weakly in L?.

d € .
For each ¢, j, apply the Div-Curl lemma (see e.g. [Ev2] or [Mu]) to > %Zil b,
a=1

we obtain

3n51 . 377, . .
axi bY, — 6962( In; — & ng) in D'(Q).
Therefore the limit equation for 5% is
d k
- O¢
g9 4 _
|egmi=33 |

a=1qg=1

9 .
L(En; — Gng)ode, Ve Q). (3T)

We compute 523 using adjoint functions. We introduce
pP= {Pj(y)}?zl, P;(y) = homogeneous polynomial of degree 1,

and we define w such that

Ajw=01inY,

w—PeW(Y). (3.8)
If we set

w—P=—x (3.9)

then the equation (3.8) is equivalent to
aj(x —P¢) =0 Ve W(Y).
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We then introduce

we(z) = {ew; (%)}

‘We observe that
Aw, =0, (3.10)
and that

wel@) = P@) — {ex; (£)}.
For ¢ € C§°(Q2), we set

(an = {¢n17 T 7¢nk}
Choose
V= Qwe
as a test function in (3.7), and multiply (3.10) by ¢n®, we obtain

/g B pw.;) — qSDﬁwej)dx—/a 5( )D we; (D*(¢nS) — pD*ns)da

/ Danfle]aq’)wqdm. (3.11)
Q
But one verifies that

DP(¢pwe;) — D w.; — DP(pP;) — ¢DP P; strongly in L%(€),

D*(¢nf) — ¢Dns — D(¢n;) — ¢D%n; strongly in L2
and that

/ b9, Dnigwy = / Dngb¥, ¢P) — € / DnSbo, éx; (E) dz
Q 9) €

— [ Dono(etn; = €inor. (3.12)
The last part of (3.12) follows from the fact that
DnShs, — D%ny(€in; — €ing) in D'(Q)
and that
[ iDmniions (%) ldo < CON) oo [V
On the other hand, as € — 0,
s (2) v (2) = (waim) (7) = oDy

in L weak star, so that passing to the limit in (3.11) gives
/Qgé(Dﬁ(fﬁPj) - ¢D6Pj)d$ — (afjﬁDyﬁw]—) /Q(Do‘(qu) — ¢D%n;)dx
= [ Donyfetn; - Gni)ords (3.13)
Q

But [, D*(¢n;)dz = 0 and the right hand side of (3.13) equals [, féDﬁ(ngj)dac
therefore (3.13) reduces to

- /Q gD Pi¢ + (a;Diw;) /Q ¢D*n;dx = 0,
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i.e.
¢,DPP; = (all, DYwi) Dn;. (3.14)

04’7?!

We now take P = Pjﬁ7 then w = Pjﬁ —

i and (3.14) gives

& = (alf, DV (Py, — X72)) Dn;
Dl/|a1(xj Pf, —P*)D%n;
= q,D%n;,
so that (using (3.2), (3.3) and (3.4))
(&}, D%v;) =a(n,v) Vv e Wy(QRY),
and n is therefore a weak solution of
—div(agVn) = ao|Vn|?n.

Remark 3.3. For general compact manifold IV, we can basically follow the same
idea used above to show that the weak limit n is a weakly harmonic map. But we
have to adapt to the work of [Be] to choose appropriate orthonormal frame on

T (o) N to rewrite the equation (3.5) into a similar form as (3.8). We then can
prove the homogenization limit n is a weakly harmonic map.

Lemma 3.13. For each ¢ € C§°(Q), b, defined by (5.6), we have

/b‘” DO¢(x)dz = 0

foralll1 <gq,j<k.

Proof: We compute
d
0 on¢ on;
aj Do - -7 — 9
/ b D ) Z/Q O, (C] + CQXQE) (8.’Ea n; 5.’Ea ) dx

Bn (ons ons 9(¢ns
—Z/ (c1+ caxa,) Dre (6330‘) —/(61+02X526)ﬁ éxaq)
Q

=/(01+02X95) " njngpde
Q

¢ nén?q&—/(q + c2xa.)
o

Lemma 3.14. Let xi = {x3;} be given by (5.1). If n is a minimizer of I. and
n® = n weakly in W2(Q, N), then VF(z) = (Fl(z)) € Wh2 0 L (Q, M**4),

lim [ a7, ( )Dale (x) Fl(2)Dnt (x)dz = 0,

e—0

Here M**F being the set of all k x k matrices.
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Proof: Let ¢ € C§°(€). Since n® is a weak solution of the Euler -Lagrange
equation (2.2), we have

[ s () DPustamg, (2) Bt

= [ s (£) PP (2 (i (£) Fi@ot) ~ 33 (£) D (Fi(@)ola)) do
= e/ﬂaag (%) Ay (DnS, DPnf) - X} (%) F,ly(x)d)(x)dx

_ ij B, € ol

[ s (£) Dnitonns (£) D (Fi(@pota)da
< €Cx| Lo (| Dnf[|72| Pl + || Dnc| 2| D(F )| 2)
— 0.

Since ¢ is arbitrary, we conclude the lemma.

Lemma 3.15. Let n be as in lemma 3.12, then n is a minimizing harmonic map
in Hy(Q, N) and

/ gﬁ( )Da (@)D )d$—>ao/|Vn| dz.

Proof: To show that n is actually a minimizing harmonic map subject to its
boundary constraints, we need to introduce the correctors. Let m. be a cut-off
function defined as follows

me € D(Q),

me(z) =0 if d(x,00) <e,
me(z) =1 if d(x,09Q) > 2e,
DYm(z)| < ¢y, ¥y €N,

Here ¢, depends on v but does not depend on .
For fixed positive number L, we define Lné € C°(MF*d Mkxd) by

, v, ly| <L
I’?é(y) =4 smooth L<|yl<L+1 (3.15)
0 ly| > L+1

with
/ () 2dy < —.
L<lyl<L+1 L

NeL(”) = {—em.(z) ng I77ﬁ Dn(z)) f:p

where xj; = {Xff} is defined by (3.1). Let w € HJ (2, N) be a given function,
when ¢ is small enough, w + pX(w) lies in a small neighborhood of N on which
the nearest point projection IT is well defined, then

= Tlo (w + u(w)) € H2(Q,N)

‘We consider

and we have

Xt w) = a(wbul) = [ as (£) DPwk@) DOul (@),
Q €
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where
Dowk(a) = Duw(e) ~ me@) D5 (£) wh(Duw() — v )
where

2(x) = e{dILy o D (me(2)x (5 (Dw(a)) )
+ HesslI, <m€(X)X§ (E)LHE(DW(X)),DO‘W)}

— mﬁ(x)Dgxf (%)Lng,(Dw(x)) + o(e).
By virtue of the construction of m. and properties of x4, 117%,7 we have
r® — 0 in L%
Therefore, if we set
A%(w) = D*w(@) = m(x) Dy} (T) b (Dw(a)),
and let
Vi) = [ aus (£) 4°(0)- 4% (w) (3.16)
we have as € — 0
XHw) - YP(w) =0 V€ HI(Q, N),

But we can pass to the limit in (3.16); we obtain ( here and in the following we
always write aqp(z) = (aj4(r)) € MExE)

11_r)r(1)YL /Q(affﬂ)DawiDﬁwj —/Q( a’ Dﬂxl] L (Dw(z)) D w;dx
- [ @Dy (D) D o (3.17)
+ [ @D DG B D)) i Dua) o

We then let L — oo in (3.17), by choice of I17J’6, we have

Lhm hH(l)YL( )—/pZBDawiDﬁwjdx (3.18)
—00 €E— Q
where
- k
Py = (aly) — (X DYx%) — (allsDIx5) + (a5 D X5 DIX).
Note

Py =ar(PY,P) =) = a1(x — P, —P®),
(3.18) then gives
lim lim Y2 (w) = a(w,w). (3.19)

L—o0 e—0

From the assumption that n° is a minimizer of

a(n,n) = /Qaag (%) D%n(z) - DPn(z)dx
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in Hy(Q,N), we know for any L fixed,
/Qaag (%) D%né(z) - DPnf(x)dx < /Qaag (%) Dwk(x)- Dﬁwf(as)dr = XE(w),
passing to the limit,
1imsup/ ally () Dng(a) D () < lim XE(w) = lim ¥ (w)

e—0

Let L — oo, using (3.19), we have

hmsup/ aﬁ( )Da $(x )Dﬁnj»(a:)dx < a(w,w). (3.20)
e—0
On the other hand, we let z. = n® — wk, we have

0 <af(z5 2%

-~

= a‘(nf,n) — 2a°(n°, wk) + a(wk, wk). (3.21)

While from lemma 3.12 and lemma 3.14, we have
x x
a‘(nf,wk) = / e (7) DPnf(x) - (Daw(x) - me(x)D;yX;(f)Ih{j(Dw(x)) - r?) dx
[e) € €
i (T . o AN
= antw) = [ s () m@D 500Dy, (£) (D)) da

i 8. € a
_/anfﬁ (Z>D n(x)rede

— a(n,w).
(3.22)
Plug in w = n to (3.22), together with (3.21) we have
0< limiglfae(ne,nf) —a(n,n). (3.23)

We then proved
lim a®(n¢, n) = a(n,n).

Finally it follows from (3.20), (3.23) and (3.3) that n is a minimizing harmonic
map in H} (2, N).
In fact, we could prove the following local convergence lemma:

Lemma 3.16. Let n¢ be as in lemma 3.12, then there exists a subsequence nc*
and a minimizing harmonic map n € Hy(Q, N) such that for any B,(x) C Q, we
have

aag (i) D*n*(y) - Dn* (y)dy — ao|Vn(y)|*dy.

B, (z) B, (z)

Proof: Since n° is bounded in H gl(Q, N), we can find a subsequence n¢ and
weakly harmonic map n such that n* —n € H} (€, N). Let m{ be a cut off
function defined as follows

ml(y) =0  if d(y,0B.(z)) <e¢,
mi(y)=1  ifd(y,dB,(x)) > 2
N DYmI (y)] < ¢, ¥y €N, ¢, depends on r,~ but not on e.  (3.24)
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For L fixed positive number, Lr)é € O (MF*d ME*d) is defined by (3.15). For
any v € WH2(B,.(z), N), we consider

ul o (v) = {—em (@) (DB (Do(a)).
For e small enough, we can define
vF, =Tlo (v+ pk.(v)). (3.25)
Now follow the same proof as in lemma 3.15, we can prove that

lim lim Qg (y) DvE (y) - DPuE (y)dy — ao|Vol*dy.  (3.26)
L—o00 e—0 BT(I) € ’ ’ BT(m)

Let aS(n,n) = fBT(I) aap(2)Dn(y) - DPn(y)dy, a,(u,v) = fBr(m) agVu - Vu. Take
subsequence nr of {n} such that
afjﬁ <;) Dn'* () — Eé weakly in L%(B,(z), M**?),
k
nk — n weakly in W2(B,(z), N),

ay’* (ne  nete ) — lim inf a3t (n!, ). (3.27)
— 00
A similar argument as in lemma 3.12, we can show that

(€, DPuy), = / £ D%v; = a,(u,v). (3.28)
B ()
Using (3.27) and (3.28), we can argue in the same way as in lemma 3.12 and
lemma 3.14 to obtain
lim lim ( )agjﬁ (y) D%n! (y)D’@veLljm(y)dy — / ( )aOVn -Voudy. (3.29)
B, (x B, (x

—00 [—o0 €]
On the other hand, we have

€l € L €] L
0 <ar*(ne — g Nk fnqk)

= ay'F (ns, n ) — 2ay"* (n, nele) + ay'* (nflk , nEle ). (3.30)

By (3.26), (3.27) and (3.29), this implies

ligigf ait(n,n) > ap(n,n).

To prove
lilm inf ay! (n, n) < a,(n,n), (3.31)

we need to modify the argument in lemma 3.15. Since now n¢ does not have the
same boundary condition on 9B, (x), we need to apply Luckhause’s lemma (2.7)
to construct suitable comparison functions. Let B,,(z) C 2 and let 6 € (0,1),
0 > 0 be given. Choose any M € N with limsup E, (n,rg,2) < Md and note

l—o00

that if e € (0,1 — /M) we must have some integer [ € {2,--- , M} such that

rozfd/ aifﬁ <y> D%ng* (y)Dﬁn;’c (y)dy < &
B 0+10) (@)\Brg o+ (1—2)e) (%) €k

for infinitely many ¢, , because otherwise we get that E, (n,rg,z) > M/ for all
sufficiently large [ by summation over [, contrary to the definition of M. Thus
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choose such an [, letting r = 79(6 + (I — 2)e) and noting that
r(14+¢€) <ro(0 + le) < ro,r € (6rg,ro) such that

e | oy (L) Dol ) Dnt (dy < o
Br(1+s)(m)\BT(m) elk

for some subsequence n (for simplicity of notation, we shall denote the

subsequence by n from now on). Passing to the limit, we then have

2—n

5 |Vn|2dx < 6.

/Br<1+s>(w)\Br(w)
By lemma 2.7, we can find w™ € W?(B,(14¢)(y)\B,(y); N) such that w® =n in
a neighborhood of 0B,.(x), w* = n in a neighborhood of 0B, (1. (x) and

7‘2_d/ |Vwek |2dw
Br(1+e)(ﬂf)\Br(w)

<Cr*d

/ (|Vn|* + |Vn€’“|2+e,;2r_2|n—n€’“|2)dx,
B7‘(1+5)(z)\B7‘(z)

where C' depends only on d, N. Now consider n’ . (z) defined by formula (3.25),
ie.

nk, =To (n+ puf,(n))
and let
nek Bro (y)\Br(1+6)(y)
nek = wek BT(1+8) (.’L’)\BT(.T)
nfk,’l‘ BT (:L')

Then by minimality of n°* we have

/ e <y> Dn*(y) - D n* (y)dy
Br(1+s)(m) €k

< / (o (y) D*i* (y) - Dk (y)
Br(1+a)(m) €k

< / Gop (y> Dl (y)Dnk (y)dy + 2/ [V [*dz.
B,(z) €k B (14e)(@)\Byr(z)
(3.32)

By (3.26), taking limit in (3.32) gives

lim inf (g (x) Dnci(z) - DPnc (z)dx < / ao|Vn|*dx + C6.
t=eo JB,(a) € B (x)
Since ¢ is arbitrary, (3.31) follows. Thus we can find a subsequence such that

ai (n n%) — a.(n,n).0

In fact, the above argument actually proves the following statement:

Lemma 3.17. Assume sequence n — n in H;(Q,Rk), where n is a minimizer
of I in H)(2, N). Then for B.(x) C Q, we have

[ o <y> D) Do )y~ ao [ Wiy
B,(z) €5 B,(z)
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and we can find a subsequence nx such that

o, € feY a. B < an;]k 2
/B,_(w) |D n;’* — D%n; 7DyX;m' (ij> 2P | — 0. (3.33)

Proof: Let n% be such that

/ (2%63 (33) D%nSix .Dﬁnfjk — hmlnf/ Aag <’JJ> DYnsi 'Dﬁnej,
Br(a:) ejk J—00 Br(z) Ej

The previous lemma showed that

/ Aog <$) D%néix - DPpfin — ao|Vnl?.
B,.(x) €ji, B, (z)

Moreover, for each L > 0 fixed, we have
) €T L
Dan?k — D%, — m:(m)D;x@ ( ) ng(Dn(x))
py

/Br(a:) Jk

L
< / aag (x> D%nfin — m:Jk (x)DZ‘Xz (x> ns(Dn(x)) (3.34)
By (z) € €

. <Dﬂnem L, @)D (f)Lnfswn(x») .

2

Ik

Let €j, — 0, then L — oo, the right hand side of (3.34) converges to

lim inf a;? (n%,n%) — a,(n,n) = 0, (3.33) follows.

J—00

3.2. Holder estimate. In this and next section, we prove some uniform small
energy estimates on n°. More precisely, we have

Theorem 3.6. There exists a constant dg independent of € such that for any
B, (z) € Q, and any minimizer n® of 1. satisfying

1 .
/ agﬂ(E)Danf-Dﬁne-dx <&
By.(z) € !

)

E.(nf r,z) =
then n® € CP(By (x)) for all 5 < 1.

We prove the theorem following the compactness argument developed by
Avellenda and Lin for linear elliptic system (See [AL1, AL2, AL3]) . Namely, we
prove the uniform Hoélder estimate in three steps.
Step 1. Show that there exist constants 6 € (0,1), u € (0,1), €9, 09 depend only on
d, N such that if
Ee(néa 170) S 50;

then for € < g,

Ee(n67 97 O) < GZH]EE(néa 17 O)
This step follows directly from the small energy estimates for minimizing
harmonic maps and the strong convergence results of E.(n¢,r,0) by lemma 3.17.
Step 2. A recursive argument of the step 1 implies

E.(n¢,7,0) < r?*E.(n, 1,0)
for all » > é

Step 3. Blow up argument in € scale.
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Before we present the lemmas, we specify that from now on, by a minimizer of
I(n) = [3 aapDn- DPn we mean I(n) < I(m) for any m € H*(B,N) with m —n
compactly supported in B.

Lemma 3.18. For any 0 < p < 1, there exist 0,0 < 0 < 1, and €y, > 0
depending only on d and N, such that if n® is a minimizer of
I = fBz(o aﬁ( )D%n;(x )D'@nj (z)dz with

ij z a, € B, €
a’ | =) DnS(x)D"n(z)dx < dy,
~/Bl(0) aﬁ(E) J
then for all e < e,
1 i (T o
— l]fD“?Dﬁ§d<02“/ Yo (Z) Dné(x) DPns (x)d.
Hd—2 /Bg(O) Aap (6) nz(x) TLJ(I) T > 51(0) Anp (6) nz(x) n](l‘) X
(3.35)

Proof: Suppose u < p/ < 1. Were (3.35) false, then for any fixed 6 € (0,1),§ > 0
which will be chosen later, we could find minimizers n of I, satisfying

a ( )Da ekDﬁ sk <5
/]31(0) By,

yet

1 / ij /T o
— a (ZYDns* () DPnck (z)dz > 6% / a (2 DYnsk () DPns (z)dx.
0(1—2 Bo(0) aﬁ( ) % ( ) j ( ) B1(0) aﬁ(ek) i ( ) j ( )

(3.36)
By the homogenization limit lemmas 3.12 and 3.15, we know there exists a
subsequence (for simplicity, we denote by n*) such that n* is a minimizer of I,
and n* — n where n is a minimizing harmonic map and

/ agﬁ (j) Danf(m)Dﬂnﬁ(x)dx — ao/ |Vn|?dz,
B (0) k B (0

/ a ﬂ< >Da M )Dﬁn?(x)dm—»ao/ |Vn|dz,
B1(0) B1(0)

Since n is a minimizing harmonic map, there exists a constant §y > 0, such that if

/ |Vn|? < &
B, (0)

then for 6§ small enough, the following holds
1 /
ﬂ/ |Vn|2dz < 6% / |Vn|2dz.
0772 JBy(0) B1(0)
Now take § = 5—0 , pass to the limit in (3.36), a contradiction arises.

Lemma 3.19. Given 1,0 < pu <1, let 0,¢g,60 be as in lemma 3.18. Then for all
n®, n® being a minimizer of I., satisfying

Ee(nea 170) S 505
for all k such that €/0% < €y, we have

E.(n<,6%,0) < 6**"E.(n¢, 1,0). (3.37)
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Proof: The proof is by induction on k. k = 1 is exactly the conclusion of lemma
3.18. Now let k satisfying /6% < ey and suppose (3.37) holds. Define

we(z) = n(0*2).
Then w® € H'(B1(0), N) and from (3.37)

9’“2) 1 Yy
aas [ — ) Dw(z) - DPw(2)dz = 7/ aag (2 ) D*né(y) - DPnc(y)dy
[ 2o () o) Dourts = gt [ s (2) D7) - Do)

< 8.
(3.38)

and w® is a minimizer of fBQ(O) Aag (9’%2) D%n(z) - DPn(z)dz. Apply lemma 3.18

to w€, we obtain

1 / o <‘—‘"“Z> Dowt(2) D st (2)dz < 0% / o ("kz> PP (2) Dt (2)dz
0472 Jpy0) ™7\ € ' P e P\ e l T

(3.39)
Rewriting (3.39) using (3.38) we see that

1 / ij (y) 8
D@2 (1) ags (=) Dni(y)D"nj(ydy)
=210 fo o) feP e J

< 92(k+1)“/ afjﬁ (£> Danﬁ(a:)Dﬁnﬂx)dx.
B1(0)

€

Remark 3.4. Note that to repeat the above recursive argument for any fixed ball
B(z,r) C 9, we actually need modify lemma 3.18 into following version:

Lemma 3.20. Suppose n¢ is a minimizer of fBz(O) aag(mtro YD%n - DPn, xq is a

fized point in R. Then we can find 5y independent of xo,n, such that if

/ g <x+$0) D% Dﬁnﬁ < 507
B;1(0) €
then

i Qo z+ %o Dnf - DPpc < 92+ Qo z+ %o D%n¢ - DPnc.
gd—2 B B
By(0) € B1(0) €

Proof: The proof amounts to a strong convergence of the corresponding energy
independent of base point zy. For this purpose, we need only to modify the
correctors by the same translation. i.e. we choose correctors by

mf(z + x0) Dyx(*£22)Vn(z), then we obtain the same energy convergence results.
The rest is similar. The same argument applies to the recursive argument for

Lipschitz estimate in the next section.

The next lemma constitutes a priori interior Holder estimate for minimizers of
[ aap(%)Dn - DPn. For simplicity, we state it for minimizers on B;(0), the most
general case will follow by localization and scaling arguments.

Lemma 3.21. Given p,0 < p < 1, there exists g > 0 depending only on d, N,
such that if n¢ is a minimizer of fBQ(o) afjﬁ(f)D“mDﬁnj satisfying

/ aag (E) Dn¢ - DPpc < o,
B1(0) €
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then there exists a constant C depending only on d, N, i such that
nJconim, o) <C | aas (2) D*n(2) - D ne()da.
2 Bl(O) €

Proof: We denote by C' a generic constant depending on d, IV, 4 possibly
changing from one estimate to another. From lemma 3.19, we conclude that for
all 7 > €/eo,

1 x T
— Z) D (x) - DPn¢ <02“/ Z) D*né(z) - DPn ().
s [ o (2 D) D@ < 00 [ (2) Do) D)
(3.40)
We take r = 2¢/¢p in (3.40) and define the new function
we(z) = n(ex) x € B2 (0). (3.41)
€0

Then w€ is a minimizer of I1 = fB 4 (0) aag( x)D%n - Dn. From the small energy
estimates in section 2, we conclude that there exists a d; > 0, such that if

/ aap(x)Dwe - DPwe < 6,
B (0)

%

then
1
sup - sup el / aap(x) Dw (z) - D w(x)
lz|< X 0<r< L T B,.(z)
1
<C d72/ aap(z)D*w(z) - Dw(x)dx  (3.42)
€o B 2 (0)

€0

Setting s = re, plug (3.2) into (3.42) we see that

1
a, € Pf,€
s s o oo (G) D0 D
<C / aas (£) Dne(z) - D ne(2). (3.43)
B (0) €

If we combine (3.40) and (3.43) and small energy estimates from theorem 2.1, the
conclusion follows for all e.

Remark 3.5. It can be checked that when a,g is bounded measurable, we still
have the strong convergence of energy and the homogenization limit is a
minimizing harmonic map. We thus conclude that the above uniform Holder
estimates holds for general case.

In fact, if we have the monotonicity formula or assume N is simply connected, we
can prove the following interesting lemma from the uniform Holder estimates.

Corollary 3.1. (Singular points converge to singular points). Suppose n€ is a
sequence of minimizers of I, = fQ aapD*n - DPn in H;(Q, N) converges weakly to
nin H; (Q,N). Assume N is simply connected or monotonicity formula holds for
n® with a uniform constant, then
(1) If y¢ is a singular point for n® such that y¢ — y € §, then y is a singular
point for n.
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(2) If y € Q is a singular point for n, then for all sufficiently small €, n® has a
singular point at some y© with y© — y.

Proof: Consider (1). By previous results, we know n is a minimizing harmonic
map in Hg1 (Q,n). If y is not a singular point of n, then for r > 0 small enough, we

have
1

do
— ag Vnzg—,
[, vl < g

here dg is given by lemma 3.21. By energy convergence result, we know for e small
enough,

1 x 1]
o, € B, € 0
rd—2 /Br(y) s (E)D ne DTS S
On the other hand, for € small enough, we have y° € B: (y), hence

1 1
7,7/ Gap <E> D%n-DPnc < 2472 / aap (f) Dn¢-DPnf < &y,
(3)42 By (y) € =2 JB.(y) €

by lemma 3.21, y° is a regular point of n¢, a contradiction.

With regard to (2). If the conclusion were false, we could find a r and a
subsequence n such that there are no singular points of n in B,.(y). Without
loss of generality, we may assume y = 0. From Lipschitz estimates lemma 2.6 plus
the assumption that monotonicity formula holds or N is simply connected, one
obtains a uniform bound on |Vn¢* |Lw(35(0)). For any 6 > 0, when r small

enough, we have rd%? fB,.(o) aag (i) Dn* DPn < §. From strong convergence

of the energy, we conclude —— [, ©) ao|Vn|? < 6. When § is small enough, this
implies 0 is a regular point of n. A contradiction. [J

In fact, if we assume aqg(x) to be continuous, we can consider the homogenization
problem

T
i s (=) D*n - DP 3.44
mln/Qa 5(6) n n (3.44)

and study the asymptotic behavior of minimizer n® as € approaches zero. One can
check easily that the theorem 3.6 continues to hold in this case. Moreover, n*
converges weakly to a minimizing harmonic map n € H'(Q, N). Recall from
Schoen and Uhlenbeck’s result (see [SU1J) the singular set of n€ is of dimension

d — 3, in particular, when d = 3, the singular set of n¢ is discrete. Later Almgren
and Lieb ([AL]) obtained a uniform bound (depends only on geometry of Q and
the energy of the boundary function of n) for the number of singular points of a
minimizing harmonic map n from Q C R? onto S2. In particular, they have the
following theorem on uniform distance between singular points:

Theorem 3.7. [JAL]] Theorem 2.1] Suppose n is a minimizing harmonic map
from Q C R? into S? having a singularity at y € Q. Let D denotes the distance
from y to O2. Then there is a universal constant C independent of Q0,m, D,y etc
such that there is no other singularity within distance CD of y.

As an application of our uniform small energy estimates, we obtain the following
theorem on the uniform bound for the number of singular points of n®.

Theorem 3.8. Let ang(x) be continuous, we consider the homogenization (3.44)
for N = 5% when d = 3. Then the total number of singular points N, of n° is
bounded above by some | independent of €.
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Proof: Choose a subsequence n which converges weakly to n € H, (€2, S?), then
n is a minimizing harmonic map and the singular points of n* converges to
singular point of n. Note singular points of n are isolated and the total number of
singular points is bounded above by a constant depending only on d, g and the
geometry of 2. Let p be a singular point of n, then there exists r depending only
on d, g, such that there is no other singular point of n in B,.(p). Without loss of
generality, we assume p = 0. Since singular points of n are limits of n, we can
always find singular points py of n such that pr — 0. We claim there exists a

L > 0 such that for k large enough, all singular points of n close to 0 lie in

B(0, Leg). Otherwise for a subsequence (we still denote by n), we can always
find a singular point py of n® with |px| = éx — 0 and g—’; — 0. Choose § > 0, we

. ) Spx . c Six 8
€k — €k (Ok €k k .
consider w = n% (%%). Then w is a minimizer of fBQ(o) aap(E5)Dn - DPn

with
/ Vw2 < C.
B1(0)

The bound follows from the energy bound in lemma 2.10.
Since % — 0, we can argue as before and show that up to a subsequence w®*
converges weakly to a minimizing harmonic map w and

)
/ Qog (w) D%y . DPw* — / ao|Vw|? (3.45)
B,(0) Ok B,.(0)

for any r < % Note each w has a singular point g; on dBs(0). By corollary 3.1,
we know ¢ converges to a singular point ¢ of w. On the other hand, we note 0 is
also a singular point of w. In fact, if 0 is a regular point of w, then for some r
small enough, we have

1
7’2*d/ ao|Vw|? < =6.
B, (0) 2

Here g is a small constant as in lemma 3.21. By strong convergence of energy
(3.45), we conclude that for k large enough, we have

7‘2_d/ a (M> |V > < &,
B,.(0) (56k

70k 2—d T
()7, (@
0 B s, (0) €k

o

By uniform energy estimates lemma 3.21 and corollary 3.1, we conclude 0 is a
regular point of n, a contradiction to our choice of 0. Therefore w has a singular
point at 0 and 0Bs(0). Since w is a minimizing harmonic map from B(0) into
S2, for any singular point p of w lies in B% (0), we conclude from theorem 3.7
there exists a r independent of w, such that there are no other singular points of
w in B,.(p). If we take § small enough, that would be a contradiction. Therefore
there exists a L such that all singular points of n close to 0 lies in By, (0) for k
large enough.

The conclusion of the theorem now follows easily. In fact, modify the proof of
theorem 2.1 in [AL] slightly, one can show that at € scale the distance between the
singular points of n¢ is given by Ce with C' independent of n¢. Hence there are M
singular points of n¢ in Br(p) for each singular point p of n, with M independent

which implies that
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of e. Since there are N singular points, there are at most M N singular points of
n® in Q with M N independent of €. [

3.3. Gradient Estimates. In this section, we use the three step compactness
method to prove L> estimates on gradients of minimizers. In this section, Xfi
always denote the corrector defined in (3.1). m7(z) is defined as in (3.24).

Lemma 3.22. Given pu € (0,1), we can find 8 € (0,1) dg, €0 > 0 depending only
on d, N, p such that the following statement is true: If n® is a minimizer of

5200 a(Z)|Vn|*dz with
x
al — Vne 2 S 5 7
/B’l(o) (e) | | 0

then for e < €y, we have

1 / T 9 9 / T 9
—_ al—)|Vn|?de < 0% al—)|Vn|d. 3.46
9‘1_2 By (0) (6) | | By (0) (6) | | ( )

and
][ |Vn(2)—Afo(x)—Vns, |*dz < 92“][ |Vne(z)—AS (2)—Vnep, [2dz+0?",
B (0) 2 B1(0) : 2

(3.47)

a €
where Aj = (Ag%) € M**?, Ag = Dox(£) 3% .

Proof: (3.46) follows from lemma 3.18. We prove (3.47). If (3.47) fails, then for
any fixed p, 0 € (0,1),5 > 0 which will be chosen later, there would exist € | 0

and n such that n* is a minimizer of [ a(&)|Vnldx with

/ a (I) |Vn |2 <6,
B1(0) €k
but

]{3 VR — A% — Vi go | *de > 6 ][
¢ (0)

|Vn* — AS = Vnerp, [Pda+ 07"
B% (O) 2 2

(3.48)

From lemma 3.12 and lemma 3.17, we can find a subsequence (we still denote by
n*) and a minimizing harmonic map n € H'(Bz(0), N) such that

n* — n weakly in wh? (B2(0))

[ (g”) v = [ el
B1(0) €k B1(0)

R Ly
Bg(0) €k By (0)

/ |Vn — Vn — V,x (E) Vnl? — 0,
B%(O) €

and

/ |Vn® — Vn — V,x (5) Vn|? = 0.
B%(O) €
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On the other hand, from the small energy estimates for minimizing harmonic
maps, we know there exists §o > 0 depending only on d, N such that if n is a
minimizing harmonic map and

/ a0|Vn|2 é (50,
B1(0)

then n € C*°(B1(0)). In particular, we have

1
2

f o vn-VapoP <t Vn-Tip, o
B%(O) 2 B%(O) 2

Note

][ [Vn — Vﬂf"Be —VyX( )vnEhB I
By (0)

Sf |Vn — V”““Be —VyX( )Vn\Q—i-C |Vn — Vnerg, |?
By (0) B%(O) 2

S][ |VTL*%BQ(0)|2+C][ |VTL*%BQ(O)|2+O(€]C)
By (0) 2 By (0) 2
< 0927[ |Vn —Vng, >+ CO? + O(e)
B (0) 2
< Co? ][ |V — ankgl - Vyx ( ) VnEkB > 4+ C0% + O(ex).
B (0)
Therefore if we take § small enough such that C6? < 6?4, pass to the limit in

(3.48), a contradiction follows.

Lemma 3 23. Let i, 80,€,90 be as in lemma 3.22. Suppose n¢ is a minimizer of

fB 0) |;”|2 If
X 2
— ) IVntl© < 4§,
/BI(O)CL<€)| < o,

then for all k satisfying 5z < €o,

1 / T 9 ok / T 9
—_ al—)|Vns <o al—)|Vn 3.49
pld—2)k B (0) (e) | | 51(0) (6) | | ( )

and

][ [Vn® —V,x ( )an —Vnp k| dx
_ g2hn

g 3:50)

Sﬁ%”]f |Vn6—Vyx( )angl —Vn631|2dx+02“
B%(O)

Proof: The proof is by induction on k. k = 1 is exactly the conclusion of previous
lemma. Now let k satisfying €/0* < ¢y and suppose (3.49) and (3.50) hold. Define

we(z) = n(0%2). (3.51)
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Then w® is a minimizer of [, ; a (%) |Vw|? satisfying

9’“96) 5 1 / T 5 T
a| — | |Vu|* = ——= al—)|Vn* < 9%“/ a(=)|Vn? < d.
/B1 (0) < € | | 0(d72)k ng (0) ( € ) | | By (0) ( € ) | | 0

Apply lemma 3.22 to w€, we obtain
0k x

1 0% €2 2 €12
oy ) al — ) |Vw|* <+ al — | |V (3.52)
0 Be(0) € B1(0) €
and

¢ [ p—— = < |2
|[Vw® — Vyx Vweg, — Vwp, |
B%(O) 2 2

e
€ T 0%\ o— 2 2
< |[Vw® — Vwép, —Vyx | — | Vwep, | +6°* (3.53)
B%(O) 2 € 2

Rewrite (3.52) and (3.53) utilizing (3.51) and (3.49), we have

1 / (37) 2 2(k+1) / z 2
—_— al—)|Vn® <6 w a (f) |[Vne
Q(d_2)(k+1) By (0) € | B1(0) € |

and

2

€ z € €
][ |VTL (x) - VyX (Z) vn'39k+1 - Vn Byk+1 |2
B yk+1 (0) 2
2

T\ —— — 1 — k+1n
< R+ ][ IVn€ — V,x (E) Vnep, — Vnep, [P+ 0% ——— o —
B1(0) 2 2
2
The next lemma constitutes a priori interior Lipschitz estimate for minimizers of
Joa (%) [Vne|?. For simplicity, we state it for minimizers on By (0), the most
general case will follow by localization and scaling arguments.

Lemma 3.24. There exists o > 0 depending only on d, N satisfies the following:
if n€ is a minimizer of fBZ(O) a(%)|Vn|2 satisfying

/ a (f) |Vnf|?dx < &,
B1(0) €

then there exists a constant C depending only on d, N, pu such that

1

| Vo | oo (B, (0)< C </ |V”6|2>
2 B1(0)

Proof: We denote by C' a generic constant depending on d, N possibly changing
from one estimate to another. Let k be such that

€/0F <eo < €/0FTL.

Substituting this k into lemma 3.23 we see that

][ |[Vn® — Vyx (f) Vnép ., —Vnép , |2
B (0) € o %

€0

€ 2k
ce2) ], me-a
€0 B

1
2

) Vi, — Viip, P+ C.

]
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From which it follows

2p
][ Vn —Vnep. 2<C (6> ][ Vit — Vneg, 2+ 0(7[ V)2
B%(O) €0 €0 B1 (0) 2 B%(O)

1
2
< Cre* + Cs. (3.54)
Let we(x) = n°(ex), then w is a minimizer of fB2(0) aapD*n - DPn. Rescaling
(3.54) we have
][ |VU)6 — V’LU6|2 S C162+2M + 0262.
B (0)

€0

From Lipschitz estimates for minimizers of | B1(0) a(z)|Vn|?, we know

Nl=

| Vwe |Loo(BL(O)) < C(][ |Vw€ - Vw€|2 + (][ VU}E)Q)
2<0 B (0) B (0)
% <0

< CE¥TH 4 O (3.55)

Rewrite (3.3) in terms of n¢, we have

1
2
IVnf|pe (5 (0) <C / |Vne|?
0 B1(0)
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