J. Math. Anal. Appl. 387 (2012) 153-165

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

A Liouville-type theorem for higher order elliptic systems

Xiaodong Yan

Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States

ARTICLE INFO ABSTRACT

Article history: We prove there are no positive radial solutions for higher order elliptic system

Received 16 May 2011

Available online 7 September 2011 (=A)"u =vP inRN

Submitted by M. del Pino (=A)Mv

Keywords: if +1 + q+1 >1-— ZW’“ We also show there are no positive solutions to the system under

Liouville theorem

2(p+1) 2(q+1))
Higher order elliptic system

the additional assumption that max( P—T * pa—1 > % The proof in the radial case
uses Rellich’s identity and the proof in the general case relies on growth estimates of the
spherical average of the solution.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction
In this paper, we consider positive solutions (u > 0, v > 0) of the following higher order elliptic system

ZAYTy = P
{( AFU=VE RN, (11)

=AMy =ul

where p >0, ¢ >0 and N > 3. We are mainly concerned with the question of nonexistence of such positive solutions.
When m =1, (1.1) becomes Lane-Emden system

Au+vP=0
nRN. (1.2)
Av+ul=0
It has been conjectured that the curve 5 +1 +3 +1 = % is the dividing curve for existence and nonexistence of positive

solutions of (1.2). The conjecture was completely solved in the case of radial solutions [4,7,9]. Mitidieri [4] showed that
there is no positive radial solutions to (1.2) below the curve p T+ q+1 = % if p>1, g > 1; the condition p>1,qg>1
was later relaxed to p > 0, ¢ > 0 by Serrin and Zou [7,9]. Furthermore it is proved by Serrin and Zou [9] that there

are infinitely many positive radial solutions above the curve N2 Therefore —— N=2 serves as the

A ) o p+1+q+1_ p+1+q+1:N
dividing curve for existence and nonexistence of positive radial solutions of (1.2).

The question for the general positive solution to (1.2), to the best of our knowledge, has not been completely solved
yet. Partial answers have been given over the years. Souto [11] proved nonexistence of positive C2 solutions below curve

it = N=2 when p, g > 0. Felmer and de Figureiredo [2] showed that when 0 < p,q < §*2 and (p.q) # (573, §£5),
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(1.2) has no positive C2 solutions. Further evidence supporting the conjecture can be found in [5], where it is shown that
there exists no positive supersolutions to (1.2) below the curve

1 1 2 1 1
p>0,q>0: + =1- max , . (1.3)
p+1 gq+1 N-2 p+1 qg+1

p% + q% = N2 will be referred as Sobolev's hyperbola
throughout the paper. For 0 < p,q, if pg<1 or pg>1 and max(%, %) > N — 2, nonexistence of positive solutions
was proved by Serrin and Zou in [8]. Direct calculation shows this is the same range of (p,q) as region below and on
S curve. Furthermore, Serrin and Zou [8] showed (1.2) admits no positive solutions satisfying algebraic growth at infinity
below the Sobolev hyperbola when N = 3. For the special case min(p,q) =1, the conjecture was proved by C.-S. Lin [3].

Busca and Manasevich [1] proved that if p,q >0, pg > 1,

N-2 2 1) 2 1 2 1) 2 1
_gmm< (p+ ), (q+ ))<max< (p+ ), (q+ )><N_2’
2 pg—1  pq-—1 pg—1  pq-—1

We refer to (1.3) as S curve and the hyperbola in the conjecture

and

<2(p+1) 2(q+l)) (N—Z N—2>
, #l—— —— )
pg—1 pq—1

2 72
there is no positive classical solutions to (1.2). Most recently, the conjecture was fully solved in the case N =3 by Polacik,
Quittner and Souplet [6] and by Souplet [10] when N = 4. Souplet also proved the conjecture when N > 5 under the
additional assumption that max(zlgz—f}), %) >N-—3.
Comparing to the Lane-Emden system, less is known about the higher order system (1.1). In the single equation case,

Mitidieri [4] proved that for 1 <q < {22, N > 4m, the problem

A2y =9, )
{ in RN

(=AYu>0, s=1,2,....2m—1

has no nontrivial positive radial solution of class C*™(RN). In this paper, we prove the following generalization of the
Liouville-type theorem to higher order elliptic system. Our first Liouville-type theorem deals with radially symmetric positive
solutions of (1.1).

Theorem 1.1.IfN >3, N>2m, p>1,q>1, (p,q) # (1,1) and ﬁ + qlﬁ > N=2m the problem (1.1) has no nontrivial positive
radial solutions of class C2™(RN).

Our second theorem handles Liouville properties of general solutions of (1.1).

Theorem 1.2. N >3, N >2m,ifp>1,q> 1, (p,q) #(1,1) and

<2m(p+1) 2m(q+1)
pg—1 ~ pq—1

) >N —2m,
the problem (1.1) has no nontrivial positive solutions of class C2™(RN).

The assumption p > 1, ¢ > 1, (p,q) # (1,1) in the previous two theorems is only needed to show that any positive
solution (u, v) of (1.1) satisfies
(-A)'u>0, (=A)v>0, i=1,2,....m—1.

We shall prove the following version of the radial and general case and Theorem 1.1 and Theorem 1.2 are obtained as
corollaries of the following theorems respectively.

Theorem 1.3.IfN >3, N > 2m, and pl? + q% > N=2M then the problem
(=A)"u=vP
(=A)Mv =ul in RN,
(=Au>0, (-A)v>0, i=1,2,....m—1

has no nontrivial positive radial solutions of class C>™(RN).
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Theorem 1.4. Let N > 3, N > 2m, then the problem
(=A)"u=vP
(—A)My =yl inRN, (14)
(-Au>0, (-A)v>0, i=1,2,....m—1

has no nontrivial positive solutions of class C¥™(RN) if pq < 1 orif pq > 1 and max(%, %) >N-2m.

The paper is organized as follows. Section 2 presents proof of radial case (Theorem 1.1 and Theorem 1.3), Section 3 is
devoted to the proof of general case (Theorem 1.2 and Theorem 1.4). The proof of the radial case uses Rellich’s Identity and
the proof of the general solution case relies on growth estimates of the spherical average of the solution.

2. Radial solutions

First we recall the following function defined in [4]

Ra(u,v) = / AMu(x, Vv) + A"v(x, Vu) dx
2

where u, v e C2'(£2), n > 1. If n =1, we have

au av
Ri(u,v) = /{%(x, Vv) + %(x, Vu) — (Vu, Vv)(x, n)}ds—l—(N—Z)/(Vu,Vv)dx.
Q

a0
If n=2,
Ra(u,v) =R1(Au,v)+R1(u, Av) — B(u, v) (2.1)
where
B(u,v):/AuAv(x,n)ds—N/AuAvdx. (2.2)

082 2

We quote the following lemma from [4]

Lemma 2.1. (See [4, Lemma 2.2].) If u, v € C2"(2), thenfor 1 <s<n —2

s—1

S
Ra(, v) =Y Ro—s(Afu, AFv) =Y " Ro sy (A* 1, A5 Fv). (2.3)
k=0 k=0

Remark 2.2. An immediate consequence of Lemma 2.1 is the following implicit form of Rellich’s identity. If u, v e C?"(£2),
then

N

n—1 n—
Ra(u, v) =Y Ry(Afu, A" 17Fv) =3 " B(aku, AT27Fy). (2.4)
k=0 k=0

Proof. Choose s =n — 2 in (2.3), taking into account of (2.1) and (2.2), (2.4) follows. O

Lemma 2.3. (See [4, Lemma 3.1].) If v € C2(RN) (N > 3) is positive, radial and superharmonic (i.e. Ay < 0in RN), then
g’ () 4+ (N=2)% () >0 forr>D0.

For w € C(RN), denote the spherical average of w by

v_v(r):wl f w(r,0), r>0,

n
SN-1

where (r, ) are spherical coordinates and wy = |SN~1| is the area of the unit sphere in RN. We quote the following lemma
from [8].
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Lemma 2.4. (See [8, Lemma 2.3].) Suppose that w > 0 is nontrivial and satisfies
Aw <0, xeRN.

Then for a € (0, 1], (w®)’ < 0. In particular, w9 is a nonincreasing function of r.

Lemma 2.5. Let (u, v) be a pair of positive solutions of (1.1),ifp>1,q > 1, (p, q) # (1, 1), then we have
(-A)u>0, (-A)lv>=0 i=12,....m—1.
Proof. We follow an idea in [12]. Let u; = (—A)'u, vi = (—A)lv, i=0,1,...,m — 1 with ug = u, vo = v. We first prove
vm—1 > 0. Suppose not, there exists xo € R" such that
Vm-1(xo) <O0.
Without loss of generality, we assume xo = 0. Then we have, since p>1,q>1,
Au+u7 =0,
Auy+uy =0,

At +vP <0,

and

AV +u<o.
Since V;;_1(0) <0 and v,_{’ <0, we have
Vm_1(r) <0 forallr >r{ =0.

It then follows easily that

hence
Vmo2 () = cor?, forr > > .
The same arguments show that
Vm_3(r) < —csr?, forr >3 >13.
and
i— L2(i—1) .
(—D'vp—i(r) > cir , forr>r,i=1,...,m.

Hence if m is odd, we have a contradiction with the fact that v > 0.
So m must be even and we have

v > cor, op=2(m—1)
and
(D' >0

for r > rg > 0.
Setting A = 29+t1(n + 2m + 2mq + 2pq(m — 1))1*9 and suppose that

k
C(PQ) ro'k

(P —

YT forr >y

Then we have
.

i () < imet (n) — fS”‘W”(S) ds,

Tk
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therefore
pl+po _ I HPo
It (1) < =g ?
_ 9
APbk(poy +n) °
hence
1+poy
Tr k pk+1
—_—
Um—1' (1) < — oF

—C
2APb (poy +n) ©

1
for r > 2P%+1ry,. Similarly

r2+poy k1

qup
b, 0
4APPk(poy +n)(pok +2)

Un—1(r) < —

11
for r > 2 14p% 2 2+p%k 1y,
Hence
r2+pok gkpk
Up_1N < —————=¢C
T 4APD(poy +m)2 O
2
for r > 2 14p%ry,
By induction, we have

kpk+1 .
Cgp r21+pak

j— 2i
(=D'tm=i(r) > forr > 2™r%ry.

(n+ 2m + poy) 2 APbr4i
In particular,

k k41
Cg p r2m+p(7k

2m
u(r) = forr > 27 P% ), = sy.

(n 4+ 2m + poy)2m Apbegm
Since
.
M W1 (1) <SP Vst (sk) — /S"*lﬁq(S) ds,
Sk
which implies

1+2
rl+2mg+pgoy _ 5k+ mq+pqoy (@

Vm_1 (r) < —
m-1() (n 4 2m + poy)2md(n + 2mq + pqoy) APbkgmg "0

s

hence

1+2mq+pqoy
r g (@p)**!

2 - 4m4 AP4bk (n 4 2m + poy)2™d (n 4 2mq + pqoy) °

Vi1 (1 < —

1
for r > 2 Pao%k+2ma+1 g, - Similarly

12+2mg+pqoy

Vm—1(r) < —

1 1
fOI' r 2 2 1+2mq-+pqoy, 2 2+2mq+pqoy, Sk.
Hence

2+2mq+pq0k
r (gp)*+!

4mq+1Apabi (n + 2m + poy)2md(pqoy, +n + 2mq)? °

Vn—1(r) < —

2
for r > 2 1+paok+2ma g
By induction, we have

C(()qp)k“ 2i+2mg+pqoy

~ 1) Vo) = i i
(=1) Vm—i(r) (11 + 2m + 2mq + pqor)2i(n + 2m + poy)2md APabi4i+ma

(gp)*+!

4ma+1 Apabi (n + 2m + poy)2Md(n + 2mq + pqoy)(pqok + 2mq +2) °

157
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2i
for r > 2 1+2mat+paok 5, Hence

CSJP)I‘“ 2m-+2mq+pqoy

v(r) =
(n + 2m + 2mq + pqoy)?™ (n + 2m + poy)2md APdbi4m-+ma

2m
for r > 2 1+2matpaok g Set

op=2(m—1), ro =To,

Ok41 = 2M + 2mq + pqoy,

2i

2m m
Tk+1 =2 142mq+pqoy, 2 1+poy T.

By our choice of A, one can show via induction that
(n + 2m + 2mq + pqo)®™ (n + 2m + poy)?MIgm+ma < A2mk+1),
We can then set
bo=0, byi1=pgby+2mk+1),
and rewrite (2.5) as
. C(()qp)k+1 )
v(r) > Wr LS > AR
Notice that
Tk+1 < CTo,
where
= 7 X0 Trmgpa, by

From iteration formula (2.6), (2.7), we have

(pk —1
pq—1

)

ox =2(m — 1)(pg)* + 2m(q + 1)

(p**+! — (k+ 1)pq +k

by, =2m
¢ (pq —1)?

(2.5)

(2.6)

2 2 2
Take M > 1 large enough so that MAPi-T > 2crq if co > 1 and MAWca1 > 2crg if cg < 1, and take r{ = MAP—T or

2
MAmca1 depending on whether cg is greater or less than 1, then we have

] (6m74+4mq)(pq)k“ —4(m+mq)+2m(k+1)pq—2mk

2
V(ry) > [ApT — 00 ask— oo,

contradiction to the fact that rq is independent of k.

Hence vip—1 > 0. up—1 > 0 can be proved similarly. Next we claim vp_; >0, up_; >0 for i=2,..

exactly the same except that we need to take extra care when m is odd. We omit the details. O

Lemma2.6.Ifpg>1,p>1,q>1, (u,v) e C*"RN), N >3, is a pair of positive radial solution of (1.1), then

_2m(p+1) _ 2m(g+1)
u(r)<Cr pa-T | v(r) < Cr pa-1 r>0,

and fork=0,1,...,m—1,r>0
|rNAk+luAm—1—kv| < CrN—zm_%

V1 (k) A1y < e

|rN—1Aku(Am—1—kv)’|

|rN (Aku)/(Am’l’kv)/’

o 2m(p+q+2)
N—-2m Pa=T

N

Cr

9 2m(p+q+2)
N—-2m =T -

N

Cr

.,m — 1. Proof is

(2.8)
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Proof. Let u, = (—A)¥u, v = (—A)*v. By Lemma 2.5, u; > 0, vi >0 and —Auy > 0, —Avy > 0, Lemma 2.4 implies u,’< <0,
v/ <0. And
k .

—(wr" ) =uear™ () = v >0, (29)

Integrating (2.9), and using the fact that uj <0, v} <0, we obtain

r

N 1 N
—uy N1 =yl — /s Uy qds > Ut (2.10)
0
.
_V;crN 1 %Vkﬂ_%/s vk+1ds r}:\]]vkﬂ. (211)
0
An application of Lemma 2.3 to uy, vy yields
ruk + (N —2)uy =0, (212)
rvk + (N —=2)vg >0. (213)
It follows from (2.10) and (2.12) that
Puger SNIN=2u,, k=0,1,...,m—1, (214)
and from (2.11), (2.13) that
r? Vir1 SN(N=2)vg, k=0,1,....m—1. (2.15)
(2.14) and (2.15) imply
2MyP — My < NM(N —2)Mu,
r2myd — r2 m <KNT(N=2)"y,
from which we can easily solve if pq > 1 that
ugCrizgzl(BTl), ngr%,
and fork=1,2,....,m—1
up < Cur~* =cr” =2k, v <Cvr =cr 2,
ipt) _op— 1 2migr) _pp— 1

0<—uj, <Cr~pi-1 0<—v, <Cr pi-1

(2.8) follows. O
Proof of Theorem 1.1. We prove by contradiction. Let (u, v) be a pair of nontrivial positive radial solution of (1.1), we have
—(U;n,ﬁ“N_l)/ _ VprN—l’ (2.16)

— (VN1 =l N, (217)

Multiply (2.16) by v and (2.17) by u and integrating by parts on (0, r) we obtain

r r
—ul, )N +/u,’n71(s)v’(s)sN_1ds=/vp“(s)sN_lds, (2.18)
0 0
r r
v (umrN T+ / ViU (s)sNds = / ud(s)sN1ds. (2.19)
0 0
Using the fact that
1 1 2 N-—-2 2
T O PO m Pat (2.20)
p+1 q+1 N 2m pq—1

and (2.8), we conclude

u, vt o, v u@rN1 =0,
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therefore
® o0
/u;nﬂ(s)v/(s)SN_l ds:/vP“(s)sN‘l ds,
0 0
® o0
/"»/1171(57)“/(5)51\]7l dS:fuq“(s)sN’lds.
0 0

On the other hand

r r

N N
o7 1 vPH(s)sNTds + m/uq“(s)s’\’_lds
0 0

r r

1 1
- mv"“(r)r” + mu"“(r)r” - [ vP(s)v/(s)sN ds — / ul(s)u’(s)sN ds

0 0

L o1 N T grigy N _ D"
=p+1v nr- + ]u nr- — on Rm(u, v).

Here we used

(—=D"Rm(u, v) :/(—A)mu(x)(x,Vv)—i—(—A)mv(x, Vu)dx
By

:/vp(x)(x, Vv) +ul(x)(x, Vu) dx
B,

r

=y / vP(s)V'(s)sN + uld(s)u’(s)sN ds.

0
By (2.4), we have
m—1 m—2
Rm(u,v) = Z Rl(AkU, Amflfkv) . Z B(Aku, Am’z’kv)
k=0 k=
m—1 L
=3 / 3§:u (x, vAT-1-ky) 4 #(X,VAku)dx
k=0yp,
m—1

m—1
- Z /(VA"u, VA™ 1 7ky) (x,n)ds + (N - 2) Z /(VA"u, VAT ky) dx

k=0 B,

m—2 m—2
— Z /(A"Hu, Am’]’kv)(x, n) ds—}-NZ/(Ak“u,Am’l’kv) dx.

kZOaB, k=0 B,
Since

aaky
/(VA"u,VAm_]_kv)dx= / a—nAm_l_kvds—/(Ak“u,Am_l_"v) dx,

By JdBr By
we can rewrite (2.23) as

m—1 k m—1—k m—1
Rn(u, v) =) / 3? 2 (x, vam-1-ky) 4 Maiv(x,v&‘u)ds -3
I<=OaBr n n l<=033r

m—2 m—1 9 Aky
_ Ak+l Am—]—k d N —2 / Am—l—k d
E /( u, v)(x,n)ds + ( )Z o vds

l<=OaBr k=OaBr

(Vaku, vA™1ky) (x, n) ds

(2.21)

(2.22)

(2.23)
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m—1 m—2
~(N=-2) )" /(A"‘Hu, ATy dx+N Y /(A"“u, A™17Ry) dx

k=0p k=0p,

m—1 k m—1-k
_ Z/ IA (x, v AT-1ky) | ‘Mi"(x, v Aku) ds
&) an on

m—1
- Z (Vaku, VAm’l"‘v) (x,n)ds

k=033r
m—2 m—1 9 AKy
— Z /(A"“u, Am‘]_kv)(x, n)ds + (N —2) Z / B—Am_1_"vds
I<=033r k=0313r n
m—2
—uv—m/]A%L@dx+z}:/XAHHLAW4*wdx (2.24)
Br k=0p,
Recall
ankuy dAm—1-ky
/(A"‘Hu, ARy dx—/(Aku, A™Ky) dx = / WA'"—l—kv — TAku (2.25)
B, B: F):

for any k, letting r — oo in (2.22), it follows from Lemma 2.6, (2.20), (2.24) and (2.25) that

N o N o o
p?v/‘vp“(s)s"”lds—f-q’?/vl’ﬂ(s)s’\”l ds:(N—Zm)/va(s)sN’lds
0 0 0

P -~ N N
which is a contradiction to Es el dee N-2m. O

Proof of Theorem 1.3. Notice the only place where assumption p > 1, ¢ > 1, (p,q) # (1,1) is needed in the proof of

Theorem 1.1 is to show ux = (—A)u > 0, v, = (—A)¥v > 0 for any given pair of positive solution (u, v). Theorem 1.3
follows from the same argument above. O

3. General solutions

When pq > 1, we introduce the following notation

oo 2pt+D _2@+1
pq—1" pq—1
and assume « > B throughout the rest of the section. The assumption
1 1 N —2m

+ >
p+1 q+1 m
can be rewritten as
ma +mp >N —2m.

We first quote the following lemmas from [8].
Lemma 3.1. (See [8, Lemma 2.7].) Suppose z = z(r) > 0O satisfies
/" n—1 /
z +TZ +¢() <0, r>0

with ¢ (r) non-negative and nonincreasing, and z' bounded for r near 0. Then
2(r) = e’ ()

where ¢ = c(N).
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Lemma 3.2. Let u be a positive solution
Au+vP =0,

where v is a positive function, then
" N-1 / p
U] +TU1+V1 <0 for0<p1 <p

where

P1

P — L
Ul(r):(up)Pl, V1(r):(vP1)P1.
Proof. See proof of Lemma 2.6 in [8]. O
We can now prove the following growth estimate on u, v.

Lemma 3.3. If pq = 1, there is no nontrivial positive solution of (1.4). If (u, v) is a positive solution of (1.4) and pq > 1, there exists
a positive constant M = M(p, q, n) such that

_ _ 2m(p+1) _ _ 2m(g+1)
um) < Mr— p-T v(r)<Mr p-T  forr >0, (3.1)

andfork=1,...,m—1,u = (—A)*u, v = (=A)kv

_ _2m(P+1)_2k . _ 2m(g@+1D) —2k
Up(r) < Mr—pa-T , V() < Mr™ e T forr>0. (3.2)

Proof. We first consider the case p,q > 1. Taking the spherical average of (1.4) and using Jensen’s inequality, we have

N—-1 _
Um—" + m—1 + VP <0,
/7 -1 _— —=q
Vim—1 + Vm—1 +u" <0,
and
" N-1 — —
Ug—1 + Ug—1 + =0,
/" -1 — —
V-1 + V-1 + V= 0
for k=1,2,...,m— 1. By assumption, u, v} are nonincreasing for k=0, 1,...,m — 1, therefore we get from Lemma 3.1
I >V, Vg =i,
Ug > crlily, Vg = crti. (33)

Solving (3.3), we obtain (3.1) and (3.2). In particular, we immediately get a contradiction if pqg = 1.
Next we assume pq > 1 and q < 1. Taking spherical average of (1.1), we have

N—-1

Vm,1// + Vm,]/ +ui=0.

From Lemma 3.1, we obtain

cr’vP, Vmo1 > crlud,

iy, Vg >t (3.4)
1 1

Solving (3.4), taking into account of Lemma 3.2 and that (u?)P < (u9)7 since q >

and if pq > 1 it follows that

%. We get a contradiction when pg =1

ud < cr—med v<er e,

We can now follow the same argument in p. 644 of [8] to conclude (3.1). (3.2) then follows from (3.1) and (3.4). O
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Lemma 3.4. Suppose that pq > 1 and (u, v) is a positive solution of (1.4). Then

_om_ 2m@+1) _om_ 2mp+1)
/qucRN am 2D /vpgcRN am- 2l
Br Br

where ¢ = c(p, q, n).

Proof.
2R 2R
/uqgcRN’Z/rl’N/uq:cR”’Z/rl’N/vm
Bgr R Br R Br
2R
:_CRNfz/‘rpN/ V-1
on
R 9B,
2R
— —cRN-2 f T < RV (R)
R

_9_2m@+D) o
< MRN-2- 5T —2m=1)

9y 2m@+D)
N—2m P41

=CR

the second inequality can be proved similarly. O
Lemma 3.5. Suppose pq < 1. Then (1.4) has no nontrivial and non-negative solutions.

Proof. The case pq =1 is proved in Lemma 3.3. We assume pq < 1. Choose s and 6 such that
1 . 1
p<s<-—, 0<6<min(1,-]),
q S
and put y =06s. It follows that
Op<y <1, yqg<6<1
and
1-6 1-—
a= €©.1), b Y
1-yq 1-6p
By Holder’s inequality,

€(0,1).

uf < (wrd)'al=1 < c(u9)”,
since u is decreasing thus bounded. Similarly,
VY < C(W)b.
On the other hand, apply Lemma 3.2 with p; =60p, q1 = yq, we conclude from Lemma 3.1 that

Un-1 = ()" 2 (W) Vg = (v] )7 > ()

and similarly
— 1 1 R

Uk = (uf)? > cr? (ufhp)?, sz(v,’:)%)cﬁ(v,]:ﬂ) . k=0,1,....m—1.

X|=

A short calculation then yields

— _ 2a(m+1)6(s+b)
ul <cr T=ab .

Since Auf <0, it follows

2a(m+1)(s +b)

N-2>
1—ab



164 X. Yan /J. Math. Anal. Appl. 387 (2012) 153-165

For s fixed, it is easy to see that

lima=limb=1.

00 6—0
Therefore
. 2am+1(s+Db)
lim ——————~ = o0,
6—0 1—ab

contradiction. Hence no solutions exist. O

Proof of Theorem 1.4. Case pq < 1 follows from Lemma 3.5. Assume pq > 1, suppose by contradiction that (1.1) admits
a non-negative and nontrivial solution (u, v). Then u > 0, v > 0 by maximum principle. If o > % it follows from (3.5)
that

_om_ 2mp+1)
fvpgcRN =51 50 as R — oo.
Br

Therefore v =0 and so is u. If & = Y2 then

/vp < cRN-2m- <c.
Bg
On the other hand, recall that for w > 0, Aw <0, we have
w(x) > clx>~N for |x| > 1. (3.6)

Lemma 3.1 implies
2

Vo1 = crful,  dmog o’V g > crtly,  Vieg >t (3.7)
(3.6) and (3.7) implies for r > 1,
> cr N+2m V> cr Nt2m v > crf™yd, (3.8)

If ¢ > 1, we conclude from (3.8) that
V> crdmtENT2ZMa for e >,

If ¢ <1, we apply Lemma 3.2 with p; =¢gp and q; =gq. It then follows from Lemma 3.1 that

—_— 1 1 — 1 — 1
q 7 2(°p3\ 7 9 \q 2(0\g
(Up_g)* Z e (vPO)T, () > cr®(up) .
From this and (3.6), we get
.1
(u9)e > cr Nt forr > 1.
Again we have
V> cr?Myd > oMt ENT2ZMG for e > 1,

Since p > 1 by our assumption,
R

/v”)a)N/rN_]\ﬁdx

Br

>C | NP dr

_‘\x _

R
> C/rN—H-zmp—(N—Zm)pq dr
1

=CInR — oo.
Contradiction. O
Proof of Theorem 1.2. Under the additional assumption p > 1, ¢ > 1, (p,q) # (1, 1), we conclude from Lemma 2.5 that any

positive pair of solutions (u, v) satisfies (—A)u >0, (—A)iv >0, i=1,2,...,m— 1. The rest of the proof then follows
from the same argument above. 0O
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