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We prove there are no positive radial solutions for higher order elliptic system{
(−�)mu = v p

(−�)m v = uq in R
N

if 1
p+1 + 1

q+1 > 1 − 2m
N . We also show there are no positive solutions to the system under

the additional assumption that max(
2(p+1)

pq−1 ,
2(q+1)
pq−1 ) � N−2m

m . The proof in the radial case
uses Rellich’s identity and the proof in the general case relies on growth estimates of the
spherical average of the solution.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider positive solutions (u > 0, v > 0) of the following higher order elliptic system

{
(−�)mu = v p

(−�)m v = uq
in R

N , (1.1)

where p > 0, q > 0 and N � 3. We are mainly concerned with the question of nonexistence of such positive solutions.
When m = 1, (1.1) becomes Lane–Emden system

{
�u + v p = 0

�v + uq = 0
in R

N . (1.2)

It has been conjectured that the curve 1
p+1 + 1

q+1 = N−2
N is the dividing curve for existence and nonexistence of positive

solutions of (1.2). The conjecture was completely solved in the case of radial solutions [4,7,9]. Mitidieri [4] showed that
there is no positive radial solutions to (1.2) below the curve 1

p+1 + 1
q+1 = N−2

N if p > 1, q > 1; the condition p > 1, q > 1
was later relaxed to p > 0, q > 0 by Serrin and Zou [7,9]. Furthermore, it is proved by Serrin and Zou [9] that there
are infinitely many positive radial solutions above the curve 1

p+1 + 1
q+1 = N−2

N . Therefore 1
p+1 + 1

q+1 = N−2
N serves as the

dividing curve for existence and nonexistence of positive radial solutions of (1.2).
The question for the general positive solution to (1.2), to the best of our knowledge, has not been completely solved

yet. Partial answers have been given over the years. Souto [11] proved nonexistence of positive C2 solutions below curve
1

p+1 + 1
q+1 = N−2

N−1 when p, q > 0. Felmer and de Figureiredo [2] showed that when 0 < p,q � N+2
N−2 and (p,q) �= ( N+2

N−2 , N+2
N−2 ),
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(1.2) has no positive C2 solutions. Further evidence supporting the conjecture can be found in [5], where it is shown that
there exists no positive supersolutions to (1.2) below the curve{

p > 0, q > 0:
1

p + 1
+ 1

q + 1
= 1 − 2

N − 2
max

(
1

p + 1
,

1

q + 1

)}
. (1.3)

We refer to (1.3) as S curve and the hyperbola in the conjecture 1
p+1 + 1

q+1 = N−2
N will be referred as Sobolev’s hyperbola

throughout the paper. For 0 < p,q, if pq � 1 or pq > 1 and max(
2(p+1)

pq−1 ,
2(q+1)
pq−1 ) � N − 2, nonexistence of positive solutions

was proved by Serrin and Zou in [8]. Direct calculation shows this is the same range of (p,q) as region below and on
S curve. Furthermore, Serrin and Zou [8] showed (1.2) admits no positive solutions satisfying algebraic growth at infinity
below the Sobolev hyperbola when N = 3. For the special case min(p,q) = 1, the conjecture was proved by C.-S. Lin [3].
Busca and Manásevich [1] proved that if p,q > 0, pq > 1,

N − 2

2
� min

(
2(p + 1)

pq − 1
,

2(q + 1)

pq − 1

)
� max

(
2(p + 1)

pq − 1
,

2(q + 1)

pq − 1

)
< N − 2,

and (
2(p + 1)

pq − 1
,

2(q + 1)

pq − 1

)
�=

(
N − 2

2
,

N − 2

2

)
,

there is no positive classical solutions to (1.2). Most recently, the conjecture was fully solved in the case N = 3 by Poláčik,
Quittner and Souplet [6] and by Souplet [10] when N = 4. Souplet also proved the conjecture when N � 5 under the
additional assumption that max(

2(p+1)
pq−1 ,

2(q+1)
pq−1 ) > N − 3.

Comparing to the Lane–Emden system, less is known about the higher order system (1.1). In the single equation case,
Mitidieri [4] proved that for 1 < q < N+4m

N−4m , N > 4m, the problem

{
�2mu = uq,

(−�)su � 0, s = 1,2, . . . ,2m − 1
in R

N

has no nontrivial positive radial solution of class C4m(RN ). In this paper, we prove the following generalization of the
Liouville-type theorem to higher order elliptic system. Our first Liouville-type theorem deals with radially symmetric positive
solutions of (1.1).

Theorem 1.1. If N � 3, N > 2m, p � 1, q � 1, (p,q) �= (1,1) and 1
p+1 + 1

q+1 > N−2m
N , the problem (1.1) has no nontrivial positive

radial solutions of class C2m(RN ).

Our second theorem handles Liouville properties of general solutions of (1.1).

Theorem 1.2. N � 3, N > 2m, if p � 1, q � 1, (p,q) �= (1,1) and

max

(
2m(p + 1)

pq − 1
,

2m(q + 1)

pq − 1

)
� N − 2m,

the problem (1.1) has no nontrivial positive solutions of class C2m(RN ).

The assumption p � 1, q � 1, (p,q) �= (1,1) in the previous two theorems is only needed to show that any positive
solution (u, v) of (1.1) satisfies

(−�)iu > 0, (−�)i v > 0, i = 1,2, . . . ,m − 1.

We shall prove the following version of the radial and general case and Theorem 1.1 and Theorem 1.2 are obtained as
corollaries of the following theorems respectively.

Theorem 1.3. If N � 3, N > 2m, and 1
p+1 + 1

q+1 > N−2m
N , then the problem

⎧⎪⎨
⎪⎩

(−�)mu = v p

(−�)m v = uq

(−�)iu > 0, (−�)i v > 0, i = 1,2, . . . ,m − 1

in R
N ,

has no nontrivial positive radial solutions of class C2m(RN ).
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Theorem 1.4. Let N � 3, N > 2m, then the problem⎧⎪⎨
⎪⎩

(−�)mu = v p

(−�)m v = uq

(−�)iu > 0, (−�)i v > 0, i = 1,2, . . . ,m − 1

in R
N , (1.4)

has no nontrivial positive solutions of class C2m(RN ) if pq � 1 or if pq > 1 and max(
2m(p+1)

pq−1 ,
2m(q+1)

pq−1 ) � N − 2m.

The paper is organized as follows. Section 2 presents proof of radial case (Theorem 1.1 and Theorem 1.3), Section 3 is
devoted to the proof of general case (Theorem 1.2 and Theorem 1.4). The proof of the radial case uses Rellich’s Identity and
the proof of the general solution case relies on growth estimates of the spherical average of the solution.

2. Radial solutions

First we recall the following function defined in [4]

Rn(u, v) =
∫
Ω

�nu(x,∇v) + �n v(x,∇u)dx

where u, v ∈ C2n(Ω), n � 1. If n = 1, we have

R1(u, v) =
∫

∂Ω

{
∂u

∂n
(x,∇v) + ∂v

∂n
(x,∇u) − (∇u,∇v)(x,n)

}
ds + (N − 2)

∫
Ω

(∇u,∇v)dx.

If n = 2,

R2(u, v) = R1(�u, v) + R1(u,�v) − B(u, v) (2.1)

where

B(u, v) =
∫

∂Ω

�u�v(x,n)ds − N

∫
Ω

�u�v dx. (2.2)

We quote the following lemma from [4]

Lemma 2.1. (See [4, Lemma 2.2].) If u, v ∈ C2n(Ω), then for 1 � s � n − 2

Rn(u, v) =
s∑

k=0

Rn−s
(
�ku,�s−k v

) −
s−1∑
k=0

Rn−(s+1)

(
�k+1u,�s−k v

)
. (2.3)

Remark 2.2. An immediate consequence of Lemma 2.1 is the following implicit form of Rellich’s identity. If u, v ∈ C2n(Ω),
then

Rn(u, v) =
n−1∑
k=0

R1
(
�ku,�n−1−k v

) −
n−2∑
k=0

B
(
�ku,�n−2−k v

)
. (2.4)

Proof. Choose s = n − 2 in (2.3), taking into account of (2.1) and (2.2), (2.4) follows. �
Lemma 2.3. (See [4, Lemma 3.1].) If ψ ∈ C2(RN ) (N � 3) is positive, radial and superharmonic (i.e. �ψ � 0 in R

N ), then

rψ ′(r) + (N − 2)ψ(r) � 0 for r > 0.

For w ∈ C(RN ), denote the spherical average of w by

w(r) = 1

ωn

∫

S N−1

w(r, θ), r > 0,

where (r, θ) are spherical coordinates and ωN = |S N−1| is the area of the unit sphere in R
N . We quote the following lemma

from [8].
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Lemma 2.4. (See [8, Lemma 2.3].) Suppose that w � 0 is nontrivial and satisfies

�w � 0, x ∈ R
N .

Then for a ∈ (0,1], (wa)′ � 0. In particular, wa is a nonincreasing function of r.

Lemma 2.5. Let (u, v) be a pair of positive solutions of (1.1), if p � 1, q � 1, (p,q) �= (1,1), then we have

(−�)iu > 0, (−�)i v > 0, i = 1,2, . . . ,m − 1.

Proof. We follow an idea in [12]. Let ui = (−�)iu, vi = (−�)i v , i = 0,1, . . . ,m − 1 with u0 = u, v0 = v . We first prove
vm−1 > 0. Suppose not, there exists x0 ∈ R

n such that

vm−1(x0) < 0.

Without loss of generality, we assume x0 = 0. Then we have, since p � 1, q � 1,

�u + u1 = 0,

�u1 + u2 = 0,

· · ·
�um−1 + v p � 0,

and

�v + v1 = 0,

�v1 + v2 = 0,

· · ·
�vm−1 + uq � 0.

Since vm−1(0) < 0 and vm−1
′ < 0, we have

vm−1(r) < 0 for all r > r1 = 0.

It then follows easily that

vm−2
′ > − vm−1(0)

n
r.

hence

vm−2(r) � c2r2, for r � r2 > r1.

The same arguments show that

vm−3(r) � −c3r4, for r � r3 > r2.

and

(−1)i vm−i(r) � cir
2(i−1), for r � ri, i = 1, . . . ,m.

Hence if m is odd, we have a contradiction with the fact that v > 0.
So m must be even and we have

v � c0rσ0 , σ0 = 2(m − 1)

and

(−1)i vm−i > 0

for r > r0 > 0.
Setting A = 2q+1(n + 2m + 2mq + 2pq(m − 1))1+q and suppose that

v(r) �
c(pq)k

0 rσk

Abk
, for r � rk.

Then we have

rn−1um−1
′(r) � rn−1

k um−1
′(rk) −

r∫
sn−1 v p(s)ds,
rk
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therefore

um−1
′(r) � − r1+pσk − r1+pσk

k

Apbk (pσk + n)
cqk pk+1

0 ,

hence

um−1
′(r) � − r1+pσk

2Apbk (pσk + n)
cqk pk+1

0

for r � 2
1

pσk+1 rk . Similarly

um−1(r) � − r2+pσk

4Apbk (pσk + n)(pσk + 2)
cqk pk+1

0

for r � 2
1

1+pσk 2
1

2+pσk rk .
Hence

um−1(r) � − r2+pσk

4Apbk (pσk + n)2
cqk pk+1

0

for r � 2
2

1+pσk rk .
By induction, we have

(−1)ium−i(r) �
cqk pk+1

0 r2i+pσk

(n + 2m + pσk)
2i Apbk 4i

for r � 2
2i

1+pσk rk.

In particular,

u(r) �
cqk pk+1

0 r2m+pσk

(n + 2m + pσk)
2m Apbk 4m

for r � 2
2m

1+pσk rk = sk.

Since

rn−1 vm−1
′(r) � sn−1

k vm−1
′(sk) −

r∫
sk

sn−1uq(s)ds,

which implies

vm−1
′(r) � − r1+2mq+pqσk − s1+2mq+pqσk

k

(n + 2m + pσk)
2mq(n + 2mq + pqσk)Apqbk 4mq

c(qp)k+1

0 ,

hence

vm−1
′(r) � − r1+2mq+pqσk

2 · 4mq Apqbk (n + 2m + pσk)
2mq(n + 2mq + pqσk)

c(qp)k+1

0

for r � 2
1

pqσk+2mq+1 sk . Similarly

vm−1(r) � − r2+2mq+pqσk

4mq+1 Apqbk (n + 2m + pσk)
2mq(n + 2mq + pqσk)(pqσk + 2mq + 2)

c(qp)k+1

0

for r � 2
1

1+2mq+pqσk 2
1

2+2mq+pqσk sk .
Hence

vm−1(r) � − r2+2mq+pqσk

4mq+1 Apqbk (n + 2m + pσk)
2mq(pqσk + n + 2mq)2

c(qp)k+1

0

for r � 2
2

1+pqσk+2mq sk .
By induction, we have

(−1)i vm−i(r) �
c(qp)k+1

0 r2i+2mq+pqσk

2i 2mq pqbk i+mq
(n + 2m + 2mq + pqσk) (n + 2m + pσk) A 4
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for r � 2
2i

1+2mq+pqσk sk . Hence

v(r) �
c(qp)k+1

0 r2m+2mq+pqσk

(n + 2m + 2mq + pqσk)
2m(n + 2m + pσk)

2mq Apqbk 4m+mq
(2.5)

for r � 2
2m

1+2mq+pqσk sk . Set

σ0 = 2(m − 1), r0 = r0,

σk+1 = 2m + 2mq + pqσk,

rk+1 = 2
2m

1+2mq+pqσk 2
2m

1+pσk rk. (2.6)

By our choice of A, one can show via induction that

(n + 2m + 2mq + pqσk)
2m(n + 2m + pσk)

2mq4m+mq � A2m(k+1).

We can then set

b0 = 0, bk+1 = pqbk + 2m(k + 1), (2.7)

and rewrite (2.5) as

v(r) �
c(qp)k+1

0

Abk+1
rσk+1 , r � rk+1.

Notice that

rk+1 � cr0,

where

c = 2
∑∞

k=0
2m

1+2mq+pqσk
+ 2m

1+pσk .

From iteration formula (2.6), (2.7), we have

σk = 2(m − 1)(pq)k + 2m(q + 1)
(pq)k − 1

pq − 1
,

bk = 2m
(pq)k+1 − (k + 1)pq + k

(pq − 1)2
.

Take M > 1 large enough so that M A
2

pq−1 � 2cr0 if c0 � 1 and M A
2

pq−1 c−1
0 � 2cr0 if c0 < 1, and take r1 = M A

2
pq−1 or

M A
2

pq−1 c−1
0 depending on whether c0 is greater or less than 1, then we have

v(r1) �
[

A
2

pq−1
](6m−4+4mq)(pq)k+1−4(m+mq)+2m(k+1)pq−2mk → ∞ as k → ∞,

contradiction to the fact that r1 is independent of k.
Hence vm−1 > 0. um−1 > 0 can be proved similarly. Next we claim vm−i � 0, um−i � 0 for i = 2, . . . ,m − 1. Proof is

exactly the same except that we need to take extra care when m is odd. We omit the details. �
Lemma 2.6. If pq > 1, p � 1, q � 1, (u, v) ∈ C2n(RN ), N � 3, is a pair of positive radial solution of (1.1), then

u(r) � Cr− 2m(p+1)
pq−1 , v(r) � Cr− 2m(q+1)

pq−1 r > 0,

and for k = 0,1, . . . ,m − 1, r > 0

∣∣rN�k+1u�m−1−k v
∣∣ � CrN−2m− 2m(p+q+2)

pq−1 ,

∣∣rN−1(�ku
)′
�m−1−k v

∣∣ � CrN−2m− 2m(p+q+2)
pq−1 ,

∣∣rN−1�ku
(
�m−1−k v

)′∣∣ � CrN−2m− 2m(p+q+2)
pq−1 ,

∣∣rN(
�ku

)′(
�m−1−k v

)′∣∣ � CrN−2m− 2m(p+q+2)
pq−1 . (2.8)
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Proof. Let uk = (−�)ku, vk = (−�)k v . By Lemma 2.5, uk > 0, vk > 0 and −�uk > 0, −�vk > 0, Lemma 2.4 implies u′
k < 0,

v ′
k < 0. And

−(
u′

krN−1)′ = uk+1rN−1, −(
v ′

krN−1)′ = vk+1rN−1, r > 0. (2.9)

Integrating (2.9), and using the fact that u′
k < 0, v ′

k < 0, we obtain

−u′
krN−1 = rN

N
uk+1 − 1

N

r∫
0

sN u′
k+1 ds � rN

N
uk+1, (2.10)

−v ′
krN−1 = rN

N
vk+1 − 1

N

r∫
0

sN v ′
k+1 ds � rN

N
vk+1. (2.11)

An application of Lemma 2.3 to uk,vk yields

ru′
k + (N − 2)uk � 0, (2.12)

rv ′
k + (N − 2)vk � 0. (2.13)

It follows from (2.10) and (2.12) that

r2uk+1 � N(N − 2)uk, k = 0,1, . . . ,m − 1, (2.14)

and from (2.11), (2.13) that

r2 vk+1 � N(N − 2)vk, k = 0,1, . . . ,m − 1. (2.15)

(2.14) and (2.15) imply

r2m v p = r2mum � Nm(N − 2)mu,

r2muq = r2m vm � Nm(N − 2)m v,

from which we can easily solve if pq > 1 that

u � Cr
−2m(p+1)

pq−1 , v � Cr
−2m(q+1)

pq−1 ,

and for k = 1,2, . . . ,m − 1

uk � Cur−2k = Cr− 2m(p+1)
pq−1 −2k

, vk � C vr−2k = cr− 2m(q+1)
pq−1 −2k;

0 < −u′
k < Cr− 2m(p+1)

pq−1 −2k−1
, 0 < −v ′

k < Cr− 2m(q+1)
pq−1 −2k−1

.

(2.8) follows. �
Proof of Theorem 1.1. We prove by contradiction. Let (u, v) be a pair of nontrivial positive radial solution of (1.1), we have

−(
u′

m−1rN−1)′ = v prN−1, (2.16)

−(
v ′

m−1rN−1)′ = uqrN−1. (2.17)

Multiply (2.16) by v and (2.17) by u and integrating by parts on (0, r) we obtain

−u′
m−1(r)v(r)rN−1 +

r∫
0

u′
m−1(s)v ′(s)sN−1 ds =

r∫
0

v p+1(s)sN−1 ds, (2.18)

−v ′
m−1(r)u(r)rN−1 +

r∫
0

v ′
m−1(s)u′(s)sN−1 ds =

r∫
0

uq+1(s)sN−1 ds. (2.19)

Using the fact that

1

p + 1
+ 1

q + 1
> 1 − 2m

N
⇐⇒ N − 2m

2m
<

p + q + 2

pq − 1
(2.20)

and (2.8), we conclude

u′ (r)v(r)rN−1 → 0, v ′ (r)u(r)rN−1 → 0,
m−1 m−1
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therefore
∞∫

0

u′
m−1(s)v ′(s)sN−1 ds =

∞∫
0

v p+1(s)sN−1 ds,

∞∫
0

v ′
m−1(s)u′(s)sN−1 ds =

∞∫
0

uq+1(s)sN−1 ds. (2.21)

On the other hand

N

p + 1

r∫
0

v p+1(s)sN−1 ds + N

q + 1

r∫
0

uq+1(s)sN−1 ds

= 1

p + 1
v p+1(r)rN + 1

q + 1
uq+1(r)rN −

r∫
0

v p(s)v ′(s)sN ds −
r∫

0

uq(s)u′(s)sN ds

= 1

p + 1
v p+1(r)rN + 1

q + 1
uq+1(r)rN − (−1)m

ωN
Rm(u, v). (2.22)

Here we used

(−1)m Rm(u, v) =
∫
Br

(−�)mu(x)(x,∇v) + (−�)m v(x,∇u)dx

=
∫
Br

v p(x)(x,∇v) + uq(x)(x,∇u)dx

= ωN

r∫
0

v p(s)v ′(s)sN + uq(s)u′(s)sN ds.

By (2.4), we have

Rm(u, v) =
m−1∑
k=0

R1
(
�ku,�m−1−k v

) −
m−2∑
k=0

B
(
�ku,�m−2−k v

)

=
m−1∑
k=0

∫
∂ Br

∂�ku

∂n

(
x,∇�m−1−k v

) + ∂�m−1−k v

∂n

(
x,∇�ku

)
dx

−
m−1∑
k=0

∫
∂ Br

(∇�ku,∇�m−1−k v
)
(x,n)ds + (N − 2)

m−1∑
k=0

∫
Br

(∇�ku,∇�m−1−k v
)

dx

−
m−2∑
k=0

∫
∂ Br

(
�k+1u,�m−1−k v

)
(x,n)ds + N

m−2∑
k=0

∫
Br

(
�k+1u,�m−1−k v

)
dx. (2.23)

Since ∫
Br

(∇�ku,∇�m−1−k v
)

dx =
∫

∂ Br

∂�ku

∂n
�m−1−k v ds −

∫
Br

(
�k+1u,�m−1−k v

)
dx,

we can rewrite (2.23) as

Rm(u, v) =
m−1∑
k=0

∫
∂ Br

∂�ku

∂n

(
x,∇�m−1−k v

) + ∂�m−1−k v

∂n

(
x,∇�ku

)
ds −

m−1∑
k=0

∫
∂ Br

(∇�ku,∇�m−1−k v
)
(x,n)ds

−
m−2∑
k=0

∫ (
�k+1u,�m−1−k v

)
(x,n)ds + (N − 2)

m−1∑
k=0

∫
∂�ku

∂n
�m−1−k v ds
∂ Br ∂ Br
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− (N − 2)

m−1∑
k=0

∫
Br

(
�k+1u,�m−1−k v

)
dx + N

m−2∑
k=0

∫
Br

(
�k+1u,�m−1−k v

)
dx

=
m−1∑
k=0

∫
∂ Br

∂�ku

∂n

(
x,∇�m−1−k v

) + ∂�m−1−k v

∂n

(
x,∇�ku

)
ds

−
m−1∑
k=0

∫
∂ Br

(∇�ku,∇�m−1−k v
)
(x,n)ds

−
m−2∑
k=0

∫
∂ Br

(
�k+1u,�m−1−k v

)
(x,n)ds + (N − 2)

m−1∑
k=0

∫
∂ Br

∂�ku

∂n
�m−1−k v ds

− (N − 2)

∫
Br

(
�mu, v

)
dx + 2

m−2∑
k=0

∫
Br

(
�k+1u,�m−1−k v

)
dx. (2.24)

Recall
∫
Br

(
�k+1u,�m−1−k v

)
dx −

∫
Br

(
�ku,�m−k v

)
dx =

∫
∂ Br

∂�ku

∂n
�m−1−k v − ∂�m−1−k v

∂n
�ku (2.25)

for any k, letting r → ∞ in (2.22), it follows from Lemma 2.6, (2.20), (2.24) and (2.25) that

N

p + 1

∞∫
0

v p+1(s)sN−1 ds + N

q + 1

∞∫
0

v p+1(s)sN−1 ds = (N − 2m)

∞∫
0

v p+1(s)sN−1 ds

which is a contradiction to N
p+1 + N

q+1 > N − 2m. �
Proof of Theorem 1.3. Notice the only place where assumption p � 1, q � 1, (p,q) �= (1,1) is needed in the proof of
Theorem 1.1 is to show uk = (−�)ku > 0, vk = (−�)k v > 0 for any given pair of positive solution (u, v). Theorem 1.3
follows from the same argument above. �
3. General solutions

When pq > 1, we introduce the following notation

α = 2(p + 1)

pq − 1
, β = 2(q + 1)

pq − 1

and assume α � β throughout the rest of the section. The assumption

1

p + 1
+ 1

q + 1
>

N − 2m

m

can be rewritten as

mα + mβ > N − 2m.

We first quote the following lemmas from [8].

Lemma 3.1. (See [8, Lemma 2.7].) Suppose z = z(r) > 0 satisfies

z′′ + n − 1

r
z′ + φ(r) � 0, r > 0

with φ(r) non-negative and nonincreasing, and z′ bounded for r near 0. Then

z(r) � cr2φ(r)

where c = c(N).
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Lemma 3.2. Let u be a positive solution

�u + v p = 0,

where v is a positive function, then

U ′′
1 + N − 1

r
U ′

1 + V p
1 � 0 for 0 < p1 � p

where

U1(r) = (
u

p1
p

) p
p1 , V 1(r) = (

v p1
) 1

p1 .

Proof. See proof of Lemma 2.6 in [8]. �
We can now prove the following growth estimate on u, v .

Lemma 3.3. If pq = 1, there is no nontrivial positive solution of (1.4). If (u, v) is a positive solution of (1.4) and pq > 1, there exists
a positive constant M = M(p,q,n) such that

u(r) � Mr− 2m(p+1)
pq−1 , v(r) � Mr− 2m(q+1)

pq−1 for r > 0, (3.1)

and for k = 1, . . . ,m − 1, uk = (−�)ku, vk = (−�)k v

uk(r) � Mr− 2m(p+1)
pq−1 −2k

, vk(r) � Mr− 2m(q+1)
pq−1 −2k for r > 0. (3.2)

Proof. We first consider the case p,q � 1. Taking the spherical average of (1.4) and using Jensen’s inequality, we have

um−1
′′ + N − 1

r
um−1

′ + v p � 0,

vm−1
′′ + N − 1

r
vm−1

′ + uq � 0,

and

uk−1
′′ + N − 1

r
uk−1

′ + uk = 0,

vk−1
′′ + N − 1

r
vk−1

′ + vk = 0

for k = 1,2, . . . ,m − 1. By assumption, uk, vk are nonincreasing for k = 0,1, . . . ,m − 1, therefore we get from Lemma 3.1

um−1 � cr2 v p, vm−1 � cr2uq,

uk−1 � cr2uk, vk−1 � cr2 vk. (3.3)

Solving (3.3), we obtain (3.1) and (3.2). In particular, we immediately get a contradiction if pq = 1.
Next we assume pq � 1 and q < 1. Taking spherical average of (1.1), we have

vm−1
′′ + N − 1

r
vm−1

′ + uq = 0.

From Lemma 3.1, we obtain

um−1 � cr2 v p, vm−1 � cr2uq,

uk−1 � cr2uk, vk−1 � cr2 vk. (3.4)

Solving (3.4), taking into account of Lemma 3.2 and that (u
1
p )p � (uq)

1
q since q � 1

p . We get a contradiction when pq = 1
and if pq > 1 it follows that

uq � cr−mαq, v � cr−mβ.

We can now follow the same argument in p. 644 of [8] to conclude (3.1). (3.2) then follows from (3.1) and (3.4). �
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Lemma 3.4. Suppose that pq > 1 and (u, v) is a positive solution of (1.4). Then∫
B R

uq � cRN−2m− 2m(q+1)
pq−1 ,

∫
B R

v p � cRN−2m− 2m(p+1)
pq−1 , (3.5)

where c = c(p,q,n).

Proof.

∫
B R

uq � cRN−2

2R∫
R

r1−N
∫
Br

uq = cRn−2

2R∫
R

r1−N
∫
Br

vm

= −cRN−2

2R∫
R

r1−N
∫

∂ Br

∂vm−1

∂n

= −cRN−2

2R∫
R

vm−1
′ � cRN−2 vm−1(R)

� M RN−2− 2m(q+1)
pq−1 −2(m−1)

= cRN−2m− 2m(q+1)
pq−1

the second inequality can be proved similarly. �
Lemma 3.5. Suppose pq � 1. Then (1.4) has no nontrivial and non-negative solutions.

Proof. The case pq = 1 is proved in Lemma 3.3. We assume pq < 1. Choose s and θ such that

p < s <
1

q
, 0 < θ < min

(
1,

1

s

)
,

and put γ = θ s. It follows that

θ p < γ < 1, γ q < θ < 1

and

a = 1 − θ

1 − γ q
∈ (0,1), b = 1 − γ

1 − θ p
∈ (0,1).

By Hölder’s inequality,

uθ �
(
uγ q

)a
u1−a � c

(
uγ q

)a
,

since u is decreasing thus bounded. Similarly,

vγ � c
(

vθ p
)b

.

On the other hand, apply Lemma 3.2 with p1 = θ p, q1 = γ q, we conclude from Lemma 3.1 that

Um−1 = (
uθ

m−1

) 1
θ � cr2(vθ p

) 1
θ , Vm−1 = (

vγ
m−1

) 1
γ � cr2(uγ q

) 1
γ

and similarly

Uk = (
uθ

k

) 1
θ � cr2(uθ

k+1
) 1

θ , Vk = (
vγ

k

) 1
γ � cr2(vγ

k+1

) 1
γ , k = 0,1, . . . ,m − 1.

A short calculation then yields

uθ � cr− 2a(m+1)θ(s+b)
1−ab .

Since �uθ � 0, it follows

N − 2 � 2a(m + 1)(s + b)
.

1 − ab
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For s fixed, it is easy to see that

lim
θ→0

a = lim
θ→0

b = 1.

Therefore

lim
θ→0

2a(m + 1)(s + b)

1 − ab
= ∞,

contradiction. Hence no solutions exist. �
Proof of Theorem 1.4. Case pq � 1 follows from Lemma 3.5. Assume pq > 1, suppose by contradiction that (1.1) admits
a non-negative and nontrivial solution (u, v). Then u > 0, v > 0 by maximum principle. If α > N−2m

m , it follows from (3.5)

that ∫
B R

v p � cRN−2m− 2m(p+1)
pq−1 → 0 as R → ∞.

Therefore v ≡ 0 and so is u. If α = N−2m
m , then∫

B R

v p � cRN−2m− 2m(p+1)
pq−1 � c.

On the other hand, recall that for w > 0, �w � 0, we have

w(x) � c|x|2−N for |x| � 1. (3.6)

Lemma 3.1 implies

vm−1 � cr2uq, um−1 � cr2 v p, uk−1 � cr2uk, vk−1 � cr2 vk. (3.7)

(3.6) and (3.7) implies for r � 1,

u � cr−N+2m, v � cr−N+2m, v � cr2muq. (3.8)

If q > 1, we conclude from (3.8) that

v � cr2m+(−N+2m)q for r � 1.

If q < 1, we apply Lemma 3.2 with p1 = qp and q1 = q. It then follows from Lemma 3.1 that
(
uq

m−1

) 1
q � cr2(v pq

) 1
q ,

(
uq

k−1

) 1
q � cr2(uq

k

) 1
q .

From this and (3.6), we get
(
uq

) 1
q � cr−N+2m for r � 1.

Again we have

v � cr2muq � cr2m+(−N+2m)q for r � 1.

Since p > 1 by our assumption,

∫
B R

v p � ωN

R∫
1

rN−1 v p dx

� C

R∫
1

rN−1 v p dr

� C

R∫
1

rN−1+2mp−(N−2m)pq dr

= C ln R → ∞.

Contradiction. �
Proof of Theorem 1.2. Under the additional assumption p � 1, q � 1, (p,q) �= (1,1), we conclude from Lemma 2.5 that any
positive pair of solutions (u, v) satisfies (−�)iu > 0, (−�)i v > 0, i = 1,2, . . . ,m − 1. The rest of the proof then follows
from the same argument above. �
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