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Abstract The Chern–Simons–Higgs energy serves as a model for high temperature super-
conductivity. We show the existence of weak solutions to the CSH equations that are min-
imizers of the CSH energy. The solutions are vortexless for an applied magnetic field hex

below the critical field strength, whereas vortices appear when hex exceeds the critical field
strength.
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1 Introduction

Chern–Simons–Higgs (CSH) theory refers to a wide class of field theory models in (2 + 1)

dimensional Minkowski space (R2,1, g) that contains a Chern–Simons term in the action
densities [3,9,10,23]. These models have applications to the theory of high temperature
superconductivity, quantum Hall effects and carry fractional charge values [3,23].

The model is described by the following CSH Lagrangian density:

Lcsh = Dαu Dαu + µ

4
εαβγ Aα

(
Fβγ − Fex

βγ

)
− 1

ε2
|u|2 (1 − |u|2)2

where A = −i Aαdxα with Aα : R
1,2 → R for α = 0, 1, 2 is the gauge potential with

covariant derivative DA = d − i A. Here, the metric tensor g = diag[1,−1,−1] is used in the
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2 D. Spirn, X. Yan

usual way to lower and raise indices. The corresponding curvature FA = − 1
2 Fβγ dxβ ∧ dxγ

with Fβγ = ∂β Aγ − ∂γ Aβ defines the gauge field, and u : R
1,2 → C is the Higgs scalar with

Dηu = ∂ηu − i Aηu, η = 0, 1, 2. Furthermore, the antisymmetric Levi-Civita tensor εαβγ is
fixed by setting ε0,1,2 = 1 and µ, ε > 0 are the Chern–Simons coupling parameters. Here
εαβγ Aα(Fβγ − Fex

βγ ) is the Chern–Simons term with applied field tensor Fex , see (1.3). The
associated Euler–Lagrange equations are

Dα Dαu + 1

ε2 u
(|u|2 − 1

) (
3 |u|2 − 1

) = 0 (1.1)

µ

4
εαβγ

(
Fβγ − Fex

βγ

)
+ J α = 0 (1.2)

where J α = (iu, Dαu) is the matter current.
Since the α = 0 refers to time coordinates, we replace D0 by ∂� = ∂t − i� and replace

Dα by ∇A = ∇ − i A when α ∈ {1, 2}. Here (�, A) is the field potential. The curvature
tensors are defined by

F =
⎛
⎝

0 −E1 −E2

E1 0 −h
E2 h 0

⎞
⎠ , Fex =

⎛
⎝

0 0 0
0 0 −hex

0 hex 0

⎞
⎠ , (1.3)

where h = curl A, Eα = ∂t Aα − ∂α� are the induced magnetic and electric fields and hex is
the applied magnetic field. We write the current J α in a more classical notation by setting

J 0 = (iu, ∂�u) = q J α = (iu,∇Aα u
) = jαA(u)

for α ∈ {1, 2} which are the charge and supercurrent, respectively. Therefore, the current
equation reads µ

2 (h − hex ) + q = 0,−µ
2 E2 + j1

A = 0, and µ
2 E1 + j2

A = 0, and in more
classical notation we write the CSH equations as:

∂2
�u = ∇2

Au + 1

ε2 u
(
1 − |u|2) (3 |u|2 − 1

)
(1.4)

q = −µ

2
(curl A − hex ) (1.5)

jA = µ

2
(E × e3) . (1.6)

Well-posedness questions for equations (1.4)–(1.6) were studied in [4,5].
Since u : R

2 → C we can easily induce the formation of topological vortices—regions
where |u| = 0 and about which the winding number of the phase is nontrivial. Setting
u = ρeiϕ ≈ eiϕ over R

2 and ϕ = dθ , then JA ≈ 1
2 curl (∇ϕ − A) = det ∇u − 1

2 h.
Assuming that E → 0 as |x | → +∞, then we can formally integrate (1.6) over R

2 and get
2πd = ∫

R2 hdx . Furthermore, integrating (1.5) over the plane and assuming that hex = 0
yields

d = 1

2π

∫

R2

hdx = − 1

µπ

∫

R2

qdx . (1.7)

As in Ginzburg–Landau theory, we see that the current and the magnetic field are quantized
about a topological vortex; however, in CSH theory the magnetic field induces a quantized
electric charge, which can have arbitrary values, depending on µ. This quantized electric
charge is a fundamental feature of Chern–Simons–Higgs theory.
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 3

We look for solutions independent of time; setting ∂t u ≡ 0 then (1.4)–(1.6) become

−�2u = ∇2
Au + 1

ε2 u
(
1 − |u|2) (3|u|2 − 1

)

�|u|2 = µε

2
(curl A − hex ) jA(u) = µ

2
∇� × e3.

Removing the electric field potential �, we are left with an unusual system of coupled elliptic
PDE’s:

− µ2
ε

4

|curl A − hex |2
|u|4 u = ∇2

Au + 1

ε2 u
(
1 − |u|2) (3|u|2 − 1

)
(1.8)

0 = −µ2
ε

4
curl

(
curl A − hex

|u|2
)

+ jA(u). (1.9)

Equations (1.8)–(1.9) can be viewed as the Euler–Lagrange equations of the following Chern–
Simons–Higgs energy

Gcsh(u, A; hex ) = 1

2

∫




|∇Au|2 + µ2
ε

4

|curl A − hex |2
|u|2 + 1

ε2 |u|2 (1 − |u|2)2 dx (1.10)

for an applied magnetic field, hex , and a bounded, simply connected domain, 
 ⊂ R
2.

A discussion of the CSH theory on bounded domains can be found in [7].
If we consider a topological vortex in (1.10) with hex = 0 then u must vanish at least

at one point. But the second term of (1.10) implies that h = curl A must likewise vanish
at that point. On the other hand the quantization relation (1.7) implies there exists a finite
mass of magnetic field about this vortex, and consequently the magnetic field concentrates
in an annular region about each topological vortex. This is in contrast to Ginzburg–Landau
vortices, where the magnetic field concentrates at the site of the vortex. The second term
proves to greatly increase the difficulty of analyzing (1.8)–(1.9) over the Ginzburg–Landau
equations, including the loss of a maximum principle.

1.1 Prior results

Most research has focussed on the self-dual case where ε = µε . In this case the CSH
equations reduce, following Hong et al. [9] and Jackiw and Weinberg [10], to a system of first
order PDE’s. Solutions can be recovered by solving (after a substitution) a Liouville-type
elliptic equation, similar to the Jaffe–Taubes approach to solving the self-dual Ginzburg–
Landau equations [11]. Important results on self-dual solutions to the Chern–Simons–Higgs
equations can be found in [3,6,7,9,10,22,23] and the references therein.

A rigorous approach to nonself-dual Chern–Simons–Higgs theory was initiated by Han
and Kim in [8], where they studied existence of solutions to the CSH equations (1.8)–(1.9).
Their primary result is

Theorem 1.1 (Han and Kim [8]) Assume u = g on ∂U with |g| = 1, and assume hex = 0.
Then there exists a solution to (1.8)–(1.9).

In order to establish their result, Han–Kim embed the CSH energy into an even more
general Maxwell–Chern–Simons–Higgs (MCSH) energy that contains an extra neutral scalar
field N . The MCSH energy has a simpler structure than the CSH energy, and the authors prove
the existence of minimizers of MCSH via the direct method and estimates on the lower order
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4 D. Spirn, X. Yan

terms. Then they take a limit to the CSH equations; however, the solution is not necessarily
a minimizer of (1.10).

The final section of [8] studies the simplified CSH energy

Ecsh(u) = 1

2

∫




|∇u|2 + 1

ε2 |u|2(1 − |u|2)2 (1.11)

and shows that minimizers with Dirichlet boundary conditions satisfy the same convergence
behavior as found by Bethuel et al. [1] for the simplified Ginzburg–Landau energy

Egl(u) = 1

2

∫




|∇u|2 + 1

2ε2 (1 − |u|2)2. (1.12)

Their methods are similar to those in [1] and rely heavily on the maximum principle for |uε|.
In order to study the full CSH functional (1.10) with an aim at understanding the nucleation

of vortices, Kurzke and Spirn [14] placed the CSH functional in the Gamma-convergence
framework. The convergence results are true for nonminimizers and even for sequences of
functions that are not solutions of the corresponding equations. The Gamma-convergence
results are separated into a compactness result combined with a lower bound for the energy
and a construction that shows that the lower bound is essentially optimal.

Theorem 1.2 (Kurzke and Spirn [14,15]) Let µε → µ ∈ (0,+∞] as ε → 0. Assume that
the external field satisfies hex = H |log ε| for some H > 0, and consider a sequence {uε, Aε}
that satisfies the Coulomb gauge condition and

Gcsh(uε, Aε; hex ) ≤ K |log ε|2.
Set aε = 1

|log ε| Aε, then {aε} is weakly precompact in W 1,p for all p < 2, and for a subse-

quence such that aε ⇀ a there holds curl aε−H
|uε | ⇀ curl a − H in L2.

Additionally, vε = 1
|log ε| j (uε) converges to v weakly in all L p with p < 2, vε|uε | ⇀ v in

L2, and wε = J (uε)|log ε| ⇀ w = 1
2 curl v. Taking a subsequence, the modulus ρε = |uε| satisfies

ρε → ρ strongly in L p for p < +∞ where ρ is either identically 0 or identically 1. If ρ = 0,
then curl a = H and v = 0. Furthermore, the energy satisfies

lim inf
ε→0

1

|log ε|2 Gcsh(uε, Aε; hex ) ≥ Gρ(v, a; H), (1.13)

with

G1(v, a; H) = 1

2

⎛
⎝
∫

U

|v − a|2 + µ2

4
| curl a − H |2 + ‖curl v‖M

⎞
⎠

when µ ∈ (0,+∞) and

G1(v, a; H) = 1

2

⎛
⎝
∫

U

|v − a|2 + ‖curl v‖M

⎞
⎠

when µ = +∞ and

G0(v, a; H) = 0. (1.14)
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 5

Conversely, for any a ∈ H1(U ; R
2) and v ∈ L2(U ; R

2) such that w = 1
2 curl v is a Radon

measure, there exist a sequence {uε} in H1(U ; C) with |uε| = 1 on ∂U and a sequence
{Aε} ∈ H1(U ; C) satisfying the Coulomb gauge conditions such that vε = 1

|log ε| j (uε) ⇀ v

in L2, wε = 1
|log ε| J (uε) ⇀ w in (C0,β)∗, aε = 1

|log ε| Aε ⇀ a in H1, and such that (1.13)
holds with equality for ρ = 1. For ρ = 0, there exists a sequence (uε, Aε) with uε → 0 and

1
|log ε| curl Aε → H such that Gcsh(uε, Aε; hex ) → 0.

An application of the last theorem is the following characterization of critical field. Critical
field hc1 is defined as the minimum applied field below which minimizers contain no vortex.

Corollary 1.3 (See [14]) As ε → 0, the critical field hc1 for nontrivial local minimizers is
given asymptotically by H1(µ)|log ε|, where

H1(µ) = 2

µ2 maxU |zµ| (1.15)

and zµ is the solution of

−µ2

4
�zµ + zµ + ä2/4 = 0

with homogeneous Dirichlet boundary conditions. When µε → +∞ then H1 = 2
max |z| where

z is a solution of �z = 1 with homogeneous Dirichlet boundary conditions.

Concerning the dependence on µ in (1.15), we find µ2 H1(µ) → 2 as µ → 0; therefore,
we formally expect that the critical field as µε → 0 should be 2|log ε|

µ2
ε

. However, when µε → 0

we have:

Theorem 1.4 (Kurzke and Spirn [15]) When µε → 0 the Gcsh(uε, Aε; hex ) fails to Gamma-
converge as ε → 0.

The failure of Gamma-convergence is due to the decreasing effectiveness of energy reduc-
tion via vortex nucleation. The counterexample arises from a clustering of vortices at a
distance of µε√|log ε| from each other.

1.2 Results

Although Gcsh(uε, Aε; hex ) fails to Gamma-converge when µε → 0, it is natural to ask
whether the added regularity of minimizers will lead to the conjectured critical field strength.
This paper concerns the development of global minimizer theory for the CSH energy in a
given space and we concentrate on the interesting µε → 0 situation.

We define the following space

V = {(u, A) ∈ H1 (
, C) × H1 (
, R
2) , such that |u| = 1 on ∂


}
.

Our main results are the following theorems. The first result extends the existence result of
Han and Kim [8].

Theorem 1.5 For any given ε, µ, hex , there exists a solution pair (u, A) of (1.8), (1.9). In
particular, (u, A) is a minimizer of Gcsh(u, A; hex ) in V .

Our second result establishes the critical field when µε → 0. The critical field calculation
for µε → (0,+∞] have already been established in [14,15].
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6 D. Spirn, X. Yan

Theorem 1.6 Assume µε → 0 satisfies µε � e−|log ε|α for any 0 < α < 1. Then there
exists a critical field hc1 = 2|log ε|

µ2
ε

such that for hex ≤ hc1 , a minimizer (u, A) in V satisfies

|u| ≥ 1
4 . For hex > hc1 , a minimizer in V must have a vortex.

Theorem 1.6 implies that for µε = 1
|log ε|γ for any γ < +∞, the critical field is 2|log ε|

µ2
ε

.

When µε → 0 at a faster rate, say µε = εα for some α > 0, then our critical field proof fails.

Remark 1.7 We remark that global minimizers of Gcsh(uε, Aε; hex ) in H1 × H1 are trivial
(u = 0, curl A = hex ). Existence of nontrivial local minimizers of Gcsh(uε, Aε; hex ) with
Neumann boundary conditions seems to be a challenging problem.

Remark 1.8 There are analogous results for asymptotics of the Ginburg–Landau energy
functional for asymptotically large and small domains, see [16].

1.3 Method

Due to the existence of the singular term µ2
ε

4
|curl A−hex |2

|u|2 in the Chern–Simons–Higgs
integrand, a standard minimization method does not yield a converging minimizing sequence
in the correct space. We consider instead a penalized energy

Gk (u, A) = 1

2

∫




[
|∇Au|2 + µ2

ε

4

|curl A − hex |2
|u|2 + 1

k2

+ 1

ε2 |u|2 (1 − |u|2)2
]

.

Establishing the existence of a minimizer of Gk for k fixed is straightforward. Furthermore,
the minimizer, (uk, Ak), of Gk satisfies its associated Euler–Lagrange equations, which in
turn provides better regularity estimates for (uk, Ak), independent of k and ε. From the added
regularity we are able to pass to the limit k → ∞ and conclude that there exists a minimizing
sequence for the original energy Gcsh that converges to a minimizer in H1 × H1.

In order to establish the critical field we split the energy Gcsh into the order parameter
energy Ecsh and the magnetic field energy, similar to the splitting method of Serfaty [21]
for the Ginzburg–Landau energy. Therefore, it is crucial to prove energy lower bounds on
Ecsh without assumptions on the phase. Since we do not know the number of vortices for
a minimizer a priori, we follow an idea of Sandier and Serfaty [20] to construct disjoint
balls that covers the region |u| ≤ 1

2 for u satisfying the gradient estimate |∇u| ≤ C
ε

. This
method is based on a construction of Jerrard and Soner [13], Jerrard [12], and Sandier [19].
To initiate the Sandier–Serfaty framework we need a collection of balls that covers

{|u| ≤ 1
2

}
and satisfies

Ecsh (u, Bi ∩ 
) =
∫

Bi ∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ≥ Cri

ε
.

In the case of the Ginzburg–Landau energy, such balls can be constructed using the lower
bound estimate of the Ginzburg–Landau energy on the circle:

Lemma 1.9 (Jerrard [12]) If r ≥ ε and m = 1 ∧ min∂ Br |u|, then
∫

∂ Br

1

2
|∇τ ρ|2 + 1

ε2

(
1 − ρ2)2 ds ≥ (1 − m)N

Cε

for some constant C, N > 0, where ρ = |u|.
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 7

Such an estimate fails for Chern–Simons energy Ecsh due to the form of the poten-

tial term 1
ε2 |u|2 (1 − |u|2)2, which is trivial on each circle ∂ Br when |u| vanishes, unlike

for the Ginzburg–Landau potential. To overcome this problem, our primary observation is
Lemma 2.9. The main idea is that although such a lower bound estimate may not be true
for all the radii, it is true for a positive measure of radii, and this is enough to bound the
Chern–Simons energy from below by Cri

ε
. We note that our result uses crucially that (u, A)

satisfies |∇u| ≤ C
ε

, i.e., we need the Euler–Lagrange equations to exist. We feel our approach
can handle more general potentials of the form |u|α|1 − |u|2|β for α, β > 0. Once we have
this first step initiated, the rest of the ball construction follows essentially from the arguments
of Jerrard [12], Jerrard and Soner [13], and Sandier and Serfaty [20].

In order to prove the critical field, we use the energy splitting method of Bethuel and
Riviere [2], Serfaty [21], and Sandier and Serfaty [20] to bound the CSH energy by:

G0 ≥ Gcsh (u, A)

≥ G0 + 2πhex

∑
i∈I

diξ0 (ai )

+π
∑
i∈I

|di |
(

|log ε| − O

(
log

∣∣∣∣
|log ε|

µε

∣∣∣∣
))

,

where G0 = Gcsh(1, hex∇⊥ξ0) is the Meissner energy and where ξ0 solves a scaled London

equation −µ2
ε

4 �ξ0 + ξ0 = −µ2
ε

4 in 
 with homogenous Dirichlet boundary conditions. Here
I is the collection of vortices that lie away from the boundary of the domain. Since µε �
e−|log ε|α then |log µε| = o (|log ε|). By elliptic estimates we show that max
 |ξ0| ∼ µ2

ε

4 , and
a simple comparison argument shows that the minimizer must be vortex-less when hex < hc1 .
Finally, we prove, by explicit construction, that once hex > hc1 there are configurations with
a single vortex that have less energy than a Meissner solution.

The paper is organized as following. In Sect. 2, we state some preliminary estimates.
When the Euler–Lagrange equations (1.8)–(1.9) exist, then we can prove stronger estimates
and our ball construction. Section 3 is devoted to the proof of our first and second theorems.

2 Preliminaries

Let u = ρeiϕ : 
 → C and A : 
 → R
2, we consider the Chern–Simons–Higgs functional

Gcsh(u, A; hex ) = 1

2

∫




[
|∇Au|2 + µ2

ε

4

|curl A − hex |2
|u|2 + 1

ε2 |u|2 (1 − |u|2)2
]

, (2.1)

where u ∈ H1 (
, C), and A ∈ H1
(

, R

2
)
. Gcsh is invariant under gauge transformations.

More precisely, for φ ∈ H2 (
, R) and
{

uφ = eiφu
Aφ = A + dφ.

We have

Gcsh(u, A; hex ) = Gcsh(uφ, Aφ; hex ).

Throughout the paper, we assume
 is a simply connected bounded domain and always choose
A such that div A = 0 and A · ν = 0 on ∂
. In particular, we can write A = (−ξy, ξx

)
for
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8 D. Spirn, X. Yan

some ξ = 0 on ∂
. We define two CSH energy densities

gcsh(u, A; hex ) = 1

2

[
|∇Au|2 + µ2

ε

4

|curl A − hex |2
|u|2 + 1

ε2 |u|2 (1 − |u|2)2
]

ecsh(u) = 1

2

[
|∇u|2 + 1

ε2 |u|2 (1 − |u|2)2
]

,

and set

Ecsh(u) =
∫




ecsh(u)dx and Gcsh(u, A; hex ) =
∫




gcsh(u, A; hex ).

The associated Euler–Lagrange equations for functional (2.1) are (1.8)–(1.9).

2.1 Energy estimates

Let |u| = ρ. We first quote the following covering lemma on the set where ρ < 1
2 from [14].

The proof of the lemma exploits the Modica–Mortola trick [17,18], used with great success
by Sandier for complex Ginzburg–Landau energies [19].

Lemma 2.1 (Kurzke and Spirn [14]) Suppose ρ ≥ 3
4 on ∂
, then we have {x ∈ 
 : |u| <

1
2 } ⊂ ∪Br j with

∑
r j ≤ CεEcsh(|u|)

for all ε ≤ ε0 small enough.

Lemma 2.1 leads to the following energy estimates.

Lemma 2.2 Suppose |
| ≤ Ecsh, Gcsh ≤ Mε and ρ ≥ 3
4 on ∂
, then for all 2 < p < ∞

and some small γ > 0, the following estimates hold

‖ρ‖H1 ≤ C
√

Mε, (2.2)

‖1 − ρ‖L p(
) ≤ C p,γ ε
2
p −γ M

1
2 + 1

p
ε , (2.3)

‖ρ‖L p ≤ C p. (2.4)

Moreover, for all 1 ≤ α < 2, we have bounds

‖ jA(u)‖Lα ≤ Cα

√
Mε, (2.5)

‖h − hex‖Lα ≤ Cα

µε

√
Mε, (2.6)

where Cα −→ ∞ as α −→ 2. If {u, A} is a weak solution of (1.8)–(1.9), we have
∥∥∥∥

h − hex

ρ2

∥∥∥∥
W 1,q

≤ Cq

µ2
ε

√
Mε (2.7)

for all 1 ≤ q < 2. In particular, this implies for A = ∇⊥ξ ,

‖∇ξ‖L∞ ≤ Cq

µ2
ε

√
Mε + Chex . (2.8)
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 9

Proof The proof of (2.2)–(2.6) can be found in [14]. We only prove (2.7) and (2.8). If u is a

weak solution of (1.8)–(1.9), from jA(u) = µ2
ε

4 curl( h−hex
ρ2 ) we deduce that for 1 ≤ q < 2,

∥∥∥∥∇
(

h − hex

ρ2

)∥∥∥∥
Lq

= 4

µ2
ε

∥∥∥∥
jA (u)

|u| ρ

∥∥∥∥
Lq

≤ C

µ2
ε

‖∇Au‖L2 ‖ρ‖
L

2q
2−q

≤ Cq

µ2
ε

√
Mε.

Since h = hex on ∂
, then the Poincaré inequality implies
∥∥∥∥

h − hex

ρ2

∥∥∥∥
W 1,q (
)

≤ Cq

µ2
ε

√
Mε,

where Cq depends on 
. This establishes (2.7).
Next we prove (2.8). By Sobolev embedding and (2.7), for any 1 < p < ∞,

∥∥∥∥
h − hex

ρ2

∥∥∥∥
L p(
)

≤ C p

∥∥∥∥
h − hex

ρ2

∥∥∥∥
W 1,q (
)

≤ C p,q

µ2
ε

√
Mε.

Therefore,

‖h − hex‖L p(
) ≤
∥∥∥∥

h − hex

ρ2

∥∥∥∥
Lq (
)

∥∥ρ2
∥∥

Lr (
)
≤ C p,q

µ2
ε

√
Mε

for any 1 < p < ∞, 1
p = 1

q + 1
r . Since h = �ξ , this implies

‖�ξ‖L p(
) ≤ C p,q

µ2
ε

√
Mε + Chex .

Since ξ = 0 on the boundary, then Sobolev embedding implies (2.8). ��
2.2 Gradient estimate for solutions of Euler–Lagrange equation

We derive gradient estimate on solutions to Euler–Lagrange equations (1.8)–(1.9).

Lemma 2.3 Assume (u, A) is a solution of (1.8)–(1.9) satisfying ∂u
∂n = 0 on ∂
 and

Gcsh (u, A) ≤ Mε , hex ≤
√

Mε

µε
. If ε Mε

µε
≤ C, ε

√
Mε

µε
≤ C, we have

|∇u| ≤ C0

ε
,

where C0 is a constant independent of u, A, ε, and µε .

Proof We follow the idea of Bethuel and Rivière [2] and Serfaty [19]. Set x = x
ε

and

u = u(εx) = u(x)

A = εA(εx) = εA(x)

∇Au = ε∇Au(εx) = ε∇Au(x)

h(x) = ε2h(εx) = ε2h(x)

hex = ε2hex

then (u, A) is a critical point of

G(v, B) = 1

2

∫




|∇Bv|2 + µ2
ε

4ε2

∣∣curl B − hex
∣∣2

|v|2 + |v|2 (1 − |v|2)2 .
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10 D. Spirn, X. Yan

The CSH equations for this functional are

− µ2
ε

4ε2

∣∣h − hex
∣∣2

|u|4 u = ∇2
A

u + u
(
1 − |u|2) (3 |u|2 − 1

)
(2.9)

(
iu,∇Au

) = µ2
ε

4ε2 ∇⊥
(

h − hex

|u|2
)

(2.10)

in 
. From rescaling we have

G(u, A) = Gcsh(u, A) ≤ Mε;
therefore, by (2.6)

∥∥h − hex
∥∥

Lq (
)
≤ C1

ε

µε

√
Mε (2.11)

for q < 2, which is bounded by a constant.
Let x0 ∈ 
.

Case 1 dist(x0, ∂
) > 2. Since div A = 0 and A · n = 0 on ∂
, then there exists a scalar
potential ξ such that

�ξ = h in B2(x0) ξ = 0 on ∂ B2(x0).

By (2.11) and since hex ≤ C2
ε2

µε

√
Mε, then

∥∥h
∥∥

Lq (B2(x0))
≤ C3

ε

µε

√
Mε = C1

ε

µε

√
Mε + C2

ε

µε

√
Mε.

By the Calderon–Zygmund inequality
∥∥ξ∥∥W 2,q (B2(x0))

≤ Cq
ε

µε

√
Mε

for all q < 2. Hence, by Sobolev embedding
∥∥A
∥∥

L p(B2(x0))
= ∥∥∇ξ

∥∥
L p ≤ C p

ε

µε

√
Mε (2.12)

for all p < +∞.

Set u = u0 + u1 where

�u0 = 0 in B2 (x0) u0 = u on ∂ B2 (x0) (2.13)

and

− �u1 = u
(
1 − |u|2) (3 |u|2 − 1

)− A
2
u

−2i A · ∇u + µ2
ε

4ε2

∣∣h − hex
∣∣2

|u|4 u in B2 (x0)

= I + I I + I I I + I V (2.14)

u1 = 0 on ∂ B2 (x0) .

Since u0 is harmonic, by elliptic estimates, we obtain

|∇u0| ≤ C on B 3
2
(x0) . (2.15)
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 11

We now prove gradient estimate on u1. On the right hand side of (2.14) we bound terms
I –I V .

To estimate I we have for all p < +∞, by (2.4)
∥∥u
(
1 − |u|2) (3|u|2 − 1

)∥∥
L p(B2(x0))

≤ C

(
‖ρ‖L p(B2(x0)) + ∥∥ρ3

∥∥
L p(B2(x0))

+
∥∥∥ρ5
∥∥∥

L p(B2(x0))

)
≤ C p.

Next, to control I I we use (2.12) and find
∥∥∥A

2
u
∥∥∥

L p(B2(x0))
≤
∥∥∥A

2
∥∥∥

Lq (B2(x0))
‖ρ‖Lr (B2(x0))

≤ C p,q,r
∥∥A
∥∥2

W 1,q (B2(x0))
≤ C p,q,r

where 1
p = 1

q + 1
r . This holds for all p < +∞. To handle the term I I I , we have for any

p < 2, from (2.12)
∥∥A · ∇u

∥∥
L p(B2(x0))

≤ ∥∥A · ∇Au
∥∥

L p(B2(x0))
+
∥∥∥A

2
u
∥∥∥

L p(B2(x0))

≤ ∥∥∇Au
∥∥

L2(B2(x0))

∥∥A
∥∥

Ls (B2(x0))
+ ∥∥A

∥∥2
L4(B2(x0))

‖ρ‖Ls (B2(x0)) ≤ C p,q,r,s

for 1
p = 1

2 + 1
s . Finally, we estimate term I V . From (2.7) we have

µ2
ε

4ε2

∥∥∥∥∥
h − hex

ρ2

∥∥∥∥∥
W 1,q (
)

= µ2
ε

4

∥∥∥∥
h − hex

ρ2

∥∥∥∥
W 1,q (
)

≤ Cq

√
Mε,

which implies from Sobolev embedding
∥∥∥∥∥

h − hex

ρ2

∥∥∥∥∥
L p(B2(x0))

≤ C p,q

∥∥∥∥∥
h − hex

ρ2

∥∥∥∥∥
W 1,q (B2(x0))

≤ C p,q

∥∥∥∥∥
h − hex

ρ2

∥∥∥∥∥
W 1,q (
)

≤ C p,q
ε2

µ2
ε

√
Mε

for all p < +∞. Therefore,
∥∥∥∥∥
µ2

ε

ε2

∣∣h − hex
∣∣2

ρ4 u

∥∥∥∥∥
Lq (B2(x0))

≤ µ2
ε

ε2

∥∥∥∥∥

∣∣h − hex
∣∣2

ρ4

∥∥∥∥∥
Lr (B2(x0))

‖ρ‖Ls (B2(x0))

≤ Cr
µ2

ε

ε2

∥∥∥∥∥
h − hex

ρ2

∥∥∥∥∥
2

L2r (B2(x0))

≤ C p,q,r
ε2

µ2
ε

Mε ≤ C p,q,r

for 1
q = 1

s + 1
r .

Combining together the estimates on the right-hand side of (2.14) yields

−�u1 = f in B2(x0) u1 = 0 on ∂ B2(x0)
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12 D. Spirn, X. Yan

with ‖ f ‖L p(B2(x0)) ≤ C p for p < 2. By the Calderon–Zygmund inequality

‖u1‖W 2,p(B2(x0)) ≤ C p ∀p < 2,

where C is independent of ε, u, and u1. Hence by Sobolev embedding,

‖∇u1‖Lq (B2(x0)) ≤ Cq ∀1 < q < ∞. (2.16)

Combining this estimate with (2.15) yields

‖∇u‖Lq (B3/2(x0)) ≤ Cq ∀1 < q < ∞. (2.17)

Working now on B3/2 (x0) instead of B2(x0), we see the third term I I I on the right hand
side can be bounded by

∥∥A · ∇u
∥∥

L p(B3/2(x0))
≤ ∥∥A

∥∥
Lq(B3/2(x0))

‖∇u‖Lr (B3/2(x0)) ≤ C p,q,r

for any 1 < p < ∞ and 1
p = 1

q + 1
r . We then have

‖u1‖W 2,p(B2(x0)) ≤ C p ∀1 < p < ∞.

This yields, by Sobolev embedding |∇u1| ≤ C on B3/2(x0), which shows, combining with
(2.15), that

|∇u| ≤ C on B3/2(x0).

Case 2 x0 ∈ ∂
. We follow the idea in [19], Proposition 6.1. After a possible change of
coordinate, we can assume

∂
 ∩ Bx0 (3ε) ⊂ {(x1, x2) ∈ R2 : x2 = 0
}

and


 ∩ Bx0 (3ε) ⊂ {(x1, x2) ∈ R2 : x2 > 0
}
.

We consider the following symmetrized configuration with respect to ∂
. We set for
(x1, x2) ∈ Bx0 (3ε) ∩ {x2 ≤ 0},

u (x1, x2) = u (x1,−x2)

A1 (x1, x2) = 2hex x2 + A1 (x1,−x2)

A2 (x1, x2) = −A2 (x1,−x2) .

As {
∂u
∂n = 0 on ∂


A · n = 0 on ∂
 ⇐⇒ A2 = 0 on ∂
,

∇u and A are continuous on Bx0 (3ε). Similarly, for x2 ≤ 0,

−�u
(
x1,x2

) = −�u (x − x2) ,

A · du (x1, x2) − hex x2
∂u

∂x1

(
x1,x2

)

= A1
∂u

∂x1

(
x1, − x2

)− A2

(
− ∂u

∂x2

(
x1, − x2

)) = A · du (x1,−x2) ,

|A|2 u (x1, x2) − h2
ex x2

2 u (x1, x2) − 2hex x2 A1u (x1, x2) = |A|2 u (x1,−x2) ,

curl A (x1, x2) − hex = hex − curl A
(
x1, − x2

)
.
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Minimizers near the first critical field for the nonself-dual Chern–Simons–Higgs energy 13

Recall curl A (x1, 0) = hex , we deduce that {u, A} satisfies in B3ε (x0)

−µ2
ε

4

|h − hex |2
|u|4 u = ∇2

Au + 1

ε2 u
(
1 − |u|2) (3 |u|2 − 1

)

−x−
2

(
2ihex

∂u

∂x1
+ h2

ex x2u + 2hex A1u

)

hex

(
iu, i

(
x−

2

0

)
u

)
+ (iu,∇Au) = µ2

ε

4
curl

(
h − hex

|u|2
)

.

Here x−
2 = min (0, x2). Each term in the equation is continuous acrossing the boundary.

Through a similar argument as in Case 1, we deduce |∇u| ≤ C
ε

. ��
2.3 Ball construction

2.3.1 Preparations

Let ρ (x) = |u (x)|, m = 1 ∧ minx∈∂ Br ρ (x). The following two lemmas give the lower
bound estimate of the energy on the circle.

Lemma 2.4 If r ≥ ε, then
∫

∂ Br

1

2
|∇τ ρ|2 + 1

ε2 ρ2 (1 − ρ2)2 ds ≥ m2 (1 − m)2

Cε

for some constant C = C (
) > 0.

Proof We follow idea of Jerrard [12]. If minx∈∂ Br ρ (x) > 1, the lemma holds trivially. When
minx∈∂ Br ρ (x) ≤ 1, let

γ =
∫

∂ Br

1

2
|∇τ ρ|2

and xmin ∈ ∂ Br be a point where ρ (xmin) = m. Then for any x ∈ ∂ Br

ρ (x) ≤ ρ (xmin) + C ‖∇τ ρ‖L2 |x − xmin| 1
2

≤ m + Cγ
1
2 |x − xmin| 1

2 ≤ 1 + m

2
(2.18)

whenever |x − xmin| ≤ |1−m|2
4C2γ

. Since r ≥ ε and xmin ∈ ∂ Br ,

H1 (∂ Br ∩ Bσ (xmin)) ≥ C−1 (σ ∧ ε) (2.19)

for any σ > 0. Since ρ2(1 − ρ2)2 ≥ C−1m2 (1 − m)2 whenever ρ ≤ 1+m
2 , we deduce from

(2.18) and (2.19) that
∫

∂ Br

ρ2 (1 − ρ2)2 ds ≥ C−1m2 (1 − m)2

(
|1 − m|2

Cγ
∧ ε

)
.

It follows that
∫

∂ Br

1

2
|∇τ ρ|2 + 1

ε2 ρ2 (1 − ρ2)2 ds ≥ γ + C−1 m2 (1 − m)2

ε2

(
|1 − m|2

Cγ
∧ ε

)
.
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14 D. Spirn, X. Yan

The conclusion is obvious if ε ≤ |1−m|2
Cγ

. If ε >
|1−m|2

Cγ
, the conclusion follows from min-

mization over γ > 0 and the fact that m ∈ [0, 1]. ��

Lemma 2.5 If r ≥ ε, then

∫

∂ Br

|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ m2πd2

r
+ m2 (1 − m)2

Cε

where C is given by Lemma 2.4 and d = deg (u, ∂ Br ) .

Proof Let v = u
|u| , then

deg (v, ∂ Br ) = 1

|∂ B1|
∫

∂ Br

det ∇τ vds ≤ 1

|∂ B1|
∫

∂ Br

|∇τ v| ds

≤ 1

|∂ B1|

⎛
⎜⎝
∫

∂ Br

|∇τ v|2 ds

⎞
⎟⎠

1
2

|∂ Br | 1
2 .

It follows
∫

∂ Br

1

2
|∇τ v|2 ds ≥ πd2

r
. (2.20)

Since |∇u|2 ≥ ρ2

2 |∇τ v|2 + 1
2 |∇τ ρ|2, the conclusion follows from (2.20) and Lemma 2.4.��

Lemma 2.6 Given |∇u|∞ ≤ C0
ε

, there exists t̂ depending only on 
 such that if λ0ε ≤ t < t̂

and 1
2 ≤ |u(x0 + teiθt )| ≤ 3

4 for some θt ∈ [0, 2π). Then

∫

∂ Bt (x0)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ C2

ε

for some constant C2 = C2 (C0, λ0,
).

Proof Let xt = x0 + teiθt . Since |∇u|∞ ≤ C0
ε

and 1
2 ≤ |u(x0 + teiθt )| ≤ 3

4 ,

∣∣∣u
(

x0 + teiθ
)

− u
(

x0 + teiθt
)∣∣∣ ≤ C0

ε
t |θ − θt | .

It follows that

3

8
≤
∣∣∣u
(

x0 + teiθ
)∣∣∣ ≤ 7

8

whenever |θ − θt | ≤ 1
8C0t ε. Since ∂
 is smooth, we can find a constant α > 0 and t̂ such

that for t < t̂ and any x0 ∈ 
,

H1
(

∂ Bt (x0) ∩ 
 ∩ B 1
8C0

ε (xt )

)
≥ α (t ∧ ε) ,
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where α is a constant depending only on 
. (A similar type of argument is given by Jerrard
[12, formula (2.8), p. 728]). Therefore, if t ≥ λ0ε,

∫


∩∂ Bt

|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥

∫


∩∂ Bt

1

ε2
|u|2 (1 − |u|2)2 ds

≥
(

3

8

)2 (1

8

)2 1

ε2

∣∣∣∣∂ Bt ∩ 
 ∩ B 1
8C0

ε (xt )

∣∣∣∣

≥ C2

ε
.

��
Remark 2.7 Given |∇uε|∞ ≤ C0

ε
. If |uε(x0 + teiθt )| = 3

4 for some θt ∈ [0, 2π) and t � ε,
then |u (z)| ≥ 1

2 for z ∈ Bt (x0). In fact, if |u (z0)| < 1
2 for some z0 ∈ Bt (x0), then

1

4
≤
∣∣∣uε

(
x0 + teiθt

)∣∣∣− |u (z0)|
≤
∣∣∣uε

(
x0 + teiθt

)
− u (z0)

∣∣∣

≤ C0

ε

∣∣∣x0 + teiθt − z0

∣∣∣ ≤ 2C0

ε
t.

which contradicts the assumption on t .

Lemma 2.8 If |u (x0)| = 3
4 and |∇u|∞ ≤ C0

ε
, then there exist constants µ0, ν0 > 0 such

that ∫

Bµ0ε(x0)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ≥ ν0.

Here µ0 = µ0 (C0), ν0 = ν0 (C0,
).

Proof Since |u (x) − u (x0)| ≤ |∇u|∞ |x − x0| ≤ C0
ε

|x − x0|, it follows that 3
4 − C0

ε
ρ ≤

|u (x)| ≤ 3
4 + C0

ε
ρ for x ∈ Bρ (x0) ∩ 
. Let ρ = 1

8C0
ε, then

1

8
≤ |u (x)| ≤ 7

8
,

1

8
≤ 1 − |u (x)| ≤ 7

8

for x ∈ B 1
8C0

ε (x0) ∩ 
. It follows that

∫

B 1
8C0

ε
(x0)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ≥

(
1

8

)4 1

ε2

∣∣∣∣B 1
8C0

ε (x0) ∩ 


∣∣∣∣ . (2.21)

Since 
 is a smooth domain, we can find α = α (
) > 0 such that

|Br (x0) ∩ 
| ≥ αr2 (2.22)

for x ∈ 
 and ∀0 < r ≤ 1. We deduce from (2.21) and (2.22) that
∫

B 1
8C0

ε
(x0)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ≥

(
1

8

)4 1

ε2 α

(
1

8C0
ε

)2

= ν0.

��
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16 D. Spirn, X. Yan

2.3.2 Ball construction

Throughout this subsection, we shall assume |u| ≥ 3
4 on ∂
 and Gcsh ≤ Mε = C |log ε|2

µ2
ε

.

Central to the proof of our critical field theorem is the following lemma that initializes a set
of vortex balls with the correct size and correct energy.

Lemma 2.9 Let S1, . . . , Sk be connected components of {|uε (x)| < 3
4 } that intersect

{|uε (x)| < 1
2 }. There exist constants ε0, δ > 0 and balls B j centered at x j and of radii

r j , j = {1, . . . , l} such that when ε < ε0,

∪k
i=1 Si ⊂ ∪l

j=1 B j , (2.23)

and for any j ∈ {1, . . . , l}

L j =
{

t ∈ (0, r j
) : ∂ Bt

(
x j
) ∩
{
|uε (x)| ≥ 1

2

}
�= ∅

}

satisfies
∣∣L j
∣∣ ≥ δr j . (2.24)

Moreover, there exists a constant C2 = C2 (δ,
) such that for i = {1, . . . , l},
∫

Bi (xi )∩


|∇uε|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ C2

ε
ri . (2.25)

Proof To prove this claim, we pick xi ∈ ∂Si and define

ri = sup

{
r > 0 : ∂ Bt (xi ) ∩

{
|u (x)| <

3

4

}
�= ∅ ∀0 < t < r

}
,

Li =
{

t ∈ (0, ri ) : ∂ Bt (xi ) ∩
{
|u (x)| ≥ 1

2

}
�= ∅

}
.

We discuss two cases. The first case handles large balls, and the desired lower bound
follows quickly. The second case handles small balls. The small-ball case is rather difficult,
and we need to increase the size of the ball by iteration until the lower bound holds or we
attain the size of the ball in Case 1.

Case 1 ri > 2Cε
|log ε|2

µ2
ε

. Here C is a constant depending only on 
 and the estimate constant

C5 given by the covering argument for {|u (x)| < 1
2 } in Lemma 2.1. Recall that there exists

constants α = α (
) and r̂ such that for all 0 < r < r̂ and for all x ∈ 
,

|Br (x) ∩ 
| ≥ αr2. (2.26)

On the other hand,

∣∣Bri (xi ) ∩ 

∣∣ =

∫

Bri (xi )∩


1dx =
ri∫

0

|∂ Bt (xi ) ∩ 
| dt

=
∫

Li

|∂ Bt (xi ) ∩ 
| dt +
∫

[0,ri ]\Li

|∂ Bt (xi ) ∩ 
| dt

≤ 2πri |Li | + ri C5ε
|log ε|2

µ2
ε

. (2.27)
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Where in the last inequality, we used Lemma 2.1 and the assumption Gcsh ≤ Mε = C |log ε|2
µ2

ε
.

It follows from (2.26) and (2.27) that if

ri >
2C5

α
ε
|log ε|2

µ2
ε

then

|Li | ≥ α

4π
ri , (2.28)

i.e., for C = C5
α

and ri > 2Cε
log2 ε

µ2
ε

, then (2.24) holds with δ1 = α
4π

.

To prove the energy bound (2.25), we note for any t ∈ Li , we have

∂ Bt (xi ) ∩
{
|u| ≥ 1

2

}
�= ∅, (2.29)

and

∂ Bt (xi ) ∩
{
|u| <

3

4

}
�= ∅. (2.30)

By continuity of u, this implies the existence of a point y ∈ ∂ Bt (xi ) such that 1
2 ≤ |u| ≤ 3

4 .
In fact, if ∂ Bt (xi ) ∩ { 1

2 ≤ |u| ≤ 3
4 } = ∅, from (2.29) we must have

∂ Bt (xi ) ∩
{
|u| >

3

4

}
�= ∅.

This and (2.30) implies there exists a point y ∈ ∂ Bt (xi ) with |u (y)| = 3
4 , contradiction.

Since 1
2 ≤ |u (y)| ≤ 3

4 , it follows from Lemma 2.6 that
∫

∂ Bt (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ C1

ε
.

From this and (2.28) we conclude
∫

Bri (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥
∫

Li

∫

∂ Bt (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dsdt

≥ α

4π
ri · C1

ε
= αC1

4π
· ri

ε
.

Case 2 ri ≤ 2Cε
|log ε|2

µ2
ε

. Let δ0 = min(δ1,
β
3 ), where δ1 = α

4π
is from Case 1 and β ∈ (0, 1)

is a constant determined later. We make our choice in the following way.

Case 2.A (2.24) holds with δ = δ0.
In this case we keep this choice of xi and Bri (xi ). The energy bound in this case can be

proved in the same way as Case 1.

Case 2.B (2.24) fails for δ = δ0.
In this case, we replace Bri (xi ) by another ball through a replacement procedure.
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First we introduce a ball of twice the size of Bri (xi ). By the definition of ri , |u (x)| ≥ 3
4 on

∂ Bri (xi ) and there must exist a point P ∈ ∂(Bri (xi ) ∩ 
) such that |u (P)| = 3
4 . Otherwise

if |u (x)| > 3
4 on ∂(Bri (xi ) ∩ 
), then there exists a small η > 0 such that |u (x)| > 3

4 on
∂(Bt (xi ) ∩ 
) for ri − η < t < ri . Contradiction to the definition of ri . Pick this P and
consider B2ri (P). Let L̃i = {t ∈ (0, 2ri ) : ∂ Bt (P) ∩ {|u (x)| ≥ 1

2 } �= ∅}. We claim that
there exists a constant β > 0 such that

∣∣L̃i
∣∣ ≥ β · 2ri . (2.31)

and there exists a constant C > 0 such that∫

B2ri (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx ≥ C · 2ri

ε
. (2.32)

Proof of (2.31) There are two cases.

Case a Bri (xi ) ⊂ 
. For such balls, we have ∀t ∈ (0, 2ri ),

∂ Bt (P) ∩ ∂ Bri (xi ) �= ∅, (2.33)

therefore (2.31) holds trivially with β = 1.

Case b Bri (xi ) ∩ ∂
 �= ∅. For those balls intersecting the boundary, we have two possibil-
ities. If we can find P ∈ ∂ Bri (xi ), since there exists constant κ > 0 that

∣∣∂ Bri (xi ) ∩ 

∣∣ ≥ κri

when ε ≤ ε0. This implies (2.33) holds for ∀t ∈ (0, cri ), where c is a constant depending
on κ . It follows (2.31) holds with a constant β depending on κ . If no such P exists, we must
have |u| > 3

4 on ∂ Bri (xi ) and there exists Q ∈ ∂
 ∩ Bri (xi ) such that |u (Q)| = 3
4 . In this

case, we choose our P such that

dist
(
P, ∂ Bri (xi )

) ≤ dist
(
Q, ∂ Bri (xi )

)

for all Q ∈ ∂
 satisfying |u (Q)| = 3
4 . For this choice of P ,

∂ Bt (P) ∩ ∂ Bri (xi ) �= ∅, ∀t ∈ (0, ri + dist
(
P, ∂ Bri (xi )

))
.

Therefore, (2.31) holds with β = 1
2 .

Proof of (2.32) We note since (2.24) fails for δ = δ0, for all t ∈ [0, ri ] \Li , since

∂ Bt (xi ) ⊂
{
|u| <

1

2

}
,

we deduce

∂ Bri −t (P) ∩
{
|u| <

1

2

}
�= ∅,

and

|[0, ri ] \Li | ≥ (1 − δ) ri . (2.34)

Case a β ≥ 1
2 . Since for all t ∈ (0, ri )

∂ Bri −t (P) ∩
{
|u| ≥ 1

2

}
�= ∅.
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This implies ri − t ∈ L̃i , for all t ∈ [0, ri ] \Li . A similar argument as in Case 1 yields
∫

∂ Bri −t (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ C1

ε
. (2.35)

This and (2.34) implies
∫

B2ri (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

=
2ri∫

0

∫

∂ Bt (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

≥
∫

t∈[0,ri ]\Li

∫

∂ Bri −t (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

≥ C1

ε
(1 − δ) ri = C1

2ε
(1 − δ) · 2ri , (2.36)

Case b β < 1
2 . In this case we have β > 2δ and |Li | ≤ δri , this yields

|[0, βri ] \Li | ≥ β

2
ri .

This and (2.35) implies
∫

B2ri (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

≥
βri∫

0

∫

∂ Bt (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

≥
∫

{t∈[0,βri ]:ri −t∈[0,ri ]\Li }

∫

∂ Bt (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2

≥ β

2
ri

C1

ε
= C1β

4ε
· 2ri (2.37)

(2.36) and (2.37) yields (2.32) with C = min
(

C1β
4 , C1

2 (1 − δ)
)

.

We now start our replacement procedure.

Case 2.B.I ∂ B2ri (P) ∩ {|u (x)| < 3
4

} = ∅.

In this case we replace xi by P and Bri (xi ) by B2ri (P) and stop. From (2.31), (2.24)
holds for the new choices with δ = β and (2.32) gives (2.25) for this new choice.

Case 2.B.II ∂ B2ri (P) ∩ {|u (x)| < 3
4 } �= ∅.

In this case, we consider B̃r (P) where r̃ is defined by

r̃ = sup
r

{
r > 2ri : ∂ Bt (P) ∩

{
|u (x)| <

3

4

}
�= ∅ for all 2ri < t < r

}
.
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Case 2.B.II.a r̃ < 4ri .

Consider

L̃ =
{

t ∈ (0, r̃) : ∂ Bt (P) ∩
{
|u (x)| ≥ 1

2

}
�= ∅
}

,

we have
∣∣L̃∣∣ ≥

∣∣∣∣
{

t ∈ (0, 2ri ) : ∂ Bt (P) ∩
{
|u (x)| ≥ 1

2

}
�= ∅
}∣∣∣∣

≥ β2ri ≥ β

2
r̃ .

In this case, we replace xi by P and Bri (xi ) by B̃r (P) and stop. Clearly, (2.24) holds with
δ = β

2 . Moreover, from (2.32),
∫

B̃r (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥
∫

B2ri (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥ C · 2ri

ε
≥ C

2ε
r̃ ,

(2.25) in this case follows with C2 = C
2 .

Case 2.B.II.b r̃ > 4ri and satisfy (2.24) with δ = δ0, we replace xi by P and Bri (xi ) by
B̃r (P) and stop. We prove the energy bound (2.25) in this case. Consider

˜̃L =
{

t ∈ (2ri , r̃) : ∂ Bt (P) ∩
{
|u| ≥ 1

2

}
�= ∅
}

.

If
∣∣∣˜̃L
∣∣∣ < δ

2 (̃r − 2ri ), since
∣∣L̃∣∣ ≥ δ̃r ,

δ

2
(̃r − 2ri ) + 2ri ≥ ∣∣L̃∣∣ ≥ δ̃r ,

i.e.,

2ri ≥ δ

2 − δ
r̃ .

It then follows from (2.32) that∫

B̃r (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥
∫

B2ri (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥ C · 2ri

ε
≥ C

ε
· δ

2 − δ
r̃ .

On the other hand if |˜̃L| ≥ δ
2 (̃r − 2ri ), then recall ∀t ∈ (2ri , r̃),

∂ Bt (P) ∩
{
|u| <

3

4

}
�= ∅.
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For any t ∈ ˜̃L , a similar argument as in Case 1 implies
∫

∂ Bt (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ C1

ε
.

Therefore,
∫

B̃r (P)∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx

≥
r̃∫

2ri

∫

∂ Bt (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds

≥
∫

˜̃L

∫

∂ Bt (xi )∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds

≥ δ

2
(̃r − 2ri ) · C1

ε
≥ C1δ

4

r̃

ε
.

Case 2.B.II.c r̃ > 4ri and (2.24) fails with δ = δ0, we replace xi by P and Bri (xi ) by
B̃r (P) and start the process again. Keep repeating the process over and over again as needed

until either we stop somewhere in the middle or we reach the radius ri > 2Cε
|log ε|2

µ2
ε

. We

then apply Case 1. In any case, we have (2.24) holds for δ = δ0 and (2.25) for each of the
chosen balls.

Finally, (2.23) follows directly from our construction. ��
Next we follow the framework of Sandier and Serfaty [20] to finish the ball construction.

In the following we let

Ecsh(u, D) =
∫

D

ecsh(u)dx,

where D ⊆ 
.

Lemma 2.10 u : 
 −→ C satisfying |∇u| ≤ C0
ε

. There exist a constant λ0 > 0 and disjoint
balls B1, . . . , Bl of radii ri such that

1. for all 1 ≤ i ≤ l, ri ≥ λ0ε.

2. {|u (x)| < 1
2 } ⊂ ∪i Bi , and ∀1 ≤ i ≤ l, {|u (x)| < 1

2 } ∩ Bi �= ∅.

3. ∀1 ≤ i ≤ l,

Ecsh (u, Bi ∩ 
) =
∫

Bi ∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ≥ C3ri

ε
.

Proof First, we include {|u (x)| < 1
2 } in balls. We use the balls obtained in Lemma 2.9 and

from (2.25), we have
∫

Bi ∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx ≥ C3ri

ε
. (2.38)

We now repeat Steps 2–5 of proof of Lemma 3.1 in Sandier and Serfaty [20] to finish the
proof. ��
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Lemma 2.11 For all r > s > λ0ε, if Br and Bs are two concentric balls of respective radii
r and s and if u : Br\Bs −→ C is such that |u| > 1

2 , d = deg (u, ∂ Br ). Then
∫

Br \Bs∩


|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 dx ≥ |d|

(
�ε

(
r

|d|
)

− �ε

(
s

|d|
))

where �ε is a function satisfies the following properties:

1. �ε(s)
s is decreasing on R+.

2. sups∈R+
�ε(s)

s ≤ C
ε

.
3. There exist ε0, t0 > 0 such that if ε < ε0 and λ0ε < t < t0, then

∣∣∣∣�ε (t) − π log
t

ε

∣∣∣∣ ≤ C.

Proof By Lemma 2.5, for λ0ε < s < t < r ,
∫

∂ Bt

|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ m2πd2

t
+ m2 (1 − m)2

Cε

≥ m2πd2

t
+
( 1

2

)2
(1 − m)2

Cε

= m2πd2

t
+ C4 (1 − m)2

ε
.

Minimize the right hand side with respect to m ∈ [0, 1], we yield
∫

∂ Bt

|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 ds ≥ fε

(
t

|d|
)

with

fε (s) = ab

a + b
, a = π

s
, b = C4

ε
.

We then repeat the proof of Lemma 3.2 in Sandier and Serfaty [20] to finish the proof. ��
We quote the following proposition from Sandier–Serfaty.

Proposition 2.12 [20, Proposition 3.1] Let u : 
 −→ C be such that |∇u|∞ ≤ C0
ε

, and {Bi }
be a family of balls of radii ri satisfying result of Lemma 2.10. Let

di =
{

deg (u, ∂ Bi ) if Bi ⊂ 


0 otherwise.

Let also s0 = mini,di �=0
ri|di | . Then for every s ≥ s0, there exists a family B (s) of disjoint balls

B1 (s) , . . . , Bk(s) (s) of radii ri (s) such that

1. The family of balls is monotone, i.e., if s < t , then

∪i Bi (s) ⊂ ∪i Bi (t) .

2. For every i , Ecsh (u, Bi (s)) ≥ ri (s) �ε(s)
s with �ε (s) defined by Lemma 2.11.

3. If Bi (s) ⊂ 
, di (s) = deg (u, ∂ Bi (s)), then ri ≥ s |di (s)|.
We now have the final balls from the following proposition.
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Proposition 2.13 u : 
 −→ C be such that |∇u|∞ ≤ C0
ε

, and Ecsh (u) ≤ C |log ε|2
µ2

ε
. Then

for any α > 0, ∃ disjoint balls {Bi }i∈I such that for sufficiently small ε

1. {|u (x)| < 1
2 } ⊂ ∪i Bi .

2. card I ≤ C |log ε|2
µ2

ε
.

3. ri ≤ C(
|log ε|

µε
)−α 1

µε
.

4. If Bi ⊂ 
 and di = deg (u, ∂ Bi ), then

Ecsh (u, Bi ) ≥ π |di |
(

|log ε| − O

(
log

∣∣∣∣
|log ε|

µε

∣∣∣∣
))

. (2.39)

Proof We start with the balls given by Lemma 2.10 then get larger balls by Proposition 2.12.
We check if s0 is small enough to be able to apply Proposition 2.12 for s large enough. Indeed,
s0 = mindi �=0

ri|di | , but from Lemma 2.10,

Cri ≤ εEcsh (u, Bi ∩ 
) ≤ Cε
|log ε|2

µ2
ε

,

so that s0 ≤ Cε
|log ε|2

µ2
ε

. We can then apply Proposition 2.12 for all s ≥ Cε
|log ε|2

µ2
ε

. In particular,

we choose

s1 =
( |log ε|

µε

)−α−1

.

Proposition 2.12 yields final balls B (s1) such that for all i

if Bi ⊂ 
, Ecsh (u, Bi (s)) ≥ �ε (s1)

s1
ri (s1) , (2.40)

with ri (s1) ≥ s1 |di (s1)|. Therefore,

Ecsh (u, Bi (s1)) ≥ �ε (s1) |di (s1)| ,
and from Lemma 2.11,

Ecsh (u, Bi (s1)) ≥ |di (s1)|
(
π log

s1

ε
− C

)
≥ |di (s1)|

(
π |log ε| − O

(
log

∣∣∣∣
|log ε|

µε

∣∣∣∣
))

.

This proves the lower bound on Ecsh.
To prove the third assertion, we get from (2.40), that

�ε (s1)

s1
ri (s1) ≤ Ecsh (u, Bi (s)) ≤ C

|log ε|2
µ2

ε

. (2.41)

Since s1 =
( | log ε|

µε

)−α−1
and �ε (s1) ≥ π |log ε| − O

(
log
∣∣∣ |log ε|

µε

∣∣∣
)

, it follows from (2.41)

that

ri (s1) ≤
C |log ε|2

µ2
ε

( |log ε|
µε

)−α−1

|log ε| ≤ C

( |log ε|
µε

)−α 1

µε

.

To prove the second assertion, we recall that from Lemma 2.10 each ball satisfies

Ecsh (u, Bi ) ≥ C
ri

ε
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with ri ≥ λ0ε, hence carries an energy that is bounded from below by a constant independent

of ε. As Ecsh ≤ C |log ε|2
µ2

ε
and the procedure of Proposition 2.12 does not increase the number

of balls, the bound on the number of balls follows. ��

3 Proof of Theorems 1.5 and 1.6

3.1 Existence of minimizer

In this section, we prove Theorem 1.5. We consider the minimization problem of the functional
(2.1) in the space

V = {(u, A) ∈ H1 (
, C) × H1 (
, R
2) , such that |u| = 1 on ∂


}
.

We have

Lemma 3.1 For all ε, µε > 0, hex given, there exists a solution (uε, Aε) of (1.8)–(1.9)
satisfying ∂u

∂ν
= 0 on ∂
 and (uε, Aε) is a minimizer of Gcsh (u, A; hex ) in V .

Proof Let W = ∩2>p>1W 1,p . We prove the existence in two steps. For simplicity of notation,
we write Gcsh (u, A; hex ) as G (u, A).
Step 1: Let

Gk (u, A) = 1

2

∫




[
|∇Au|2 + µ2

4

|curl A − hex |2
|u|2 + 1

k2

+ 1

ε2 |u|2 (1 − |u|2)2
]

.

We consider the penalized minimization problem infV Gk (u, A). We claim there is a min-
imzer (vk, Bk) for Gk (u, A) in V . Let (vn, An) is a minimizing sequence for Gk (u, A) in
H1 × W and |vn | = 1 on ∂
. We choose An such that div An = 0 and An · ν = 0 on ∂


and write An = (−ξny, ξnx ). By Lemma 2.2 , we have for all 1 ≤ p < 2,

‖hn − hex‖L p ≤ C,
∥∥∇An un

∥∥
L2 ≤ C (3.1)

and ‖ρn‖H1 ≤ C. (3.2)

By Sobolev embedding, (3.2) implies

‖ρn‖Lq ≤ C ∀1 < q < ∞. (3.3)

Since �ξn = curl An = hn , by W 1,p estimates for elliptic equations, for all 1 < p < 2,

‖An‖W 1,p ≤ ‖ξn‖W 2,p ≤ ‖�ξn‖L p ≤ ‖hn − hex‖L p + ‖hex‖L p ≤ C. (3.4)

By Sobolev embedding, this implies

‖An‖Lq ≤ C, ∀1 < q < ∞. (3.5)

By (3.1), (3.3) and (3.5), we conclude
∫




|∇un |2 ≤ 2
∫




|∇Au|2 + |An |2 |un |2

≤ C +
⎛
⎝
∫




|An |4
⎞
⎠

1
2
⎛
⎝
∫




|un |4
⎞
⎠

1
2

≤ C. (3.6)
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From (3.4) and (3.6), subject to a subsequence, we have

un ⇀ u in H1,

An ⇀ A in W 1,p, ∀1 ≤ p < 2

and

hn − hex ⇀ h − hex in L p ∀1 ≤ p < 2.

In particular, |u| = 1 on ∂
 by the trace theorem. Since
∥∥∥∥∥∥

hn − hex√
ρ2

n + 1
k2

∥∥∥∥∥∥
L2

≤ C,

and

hn − hex = hn − hex√
ρ2

n + 1
k2

·
√

ρ2
n + 1

k2 ,

√
ρ2

n + 1

k2 −→
√

ρ2 + 1

k2 in L p, ∀1 < p < ∞,

we conclude

hn − hex√
ρ2

n + 1
k2

⇀
h − hex√
ρ2 + 1

k2

in L2.

It now follows from lower semicontinuity of the functional that (u, A) is a minimizer of
Gk (u, A) in H1 × W . In particular, (u, A) satisfies the Euler–Lagrange equation

jA(u) = µ2

4
∇⊥
(

curl A − hex

ρ2 + 1
k2

)
. (3.7)

Since ∥∥∥∥
jA(u)

ρ

∥∥∥∥
L2

≤ ‖∇Au‖L2 ≤ C,

(3.7) implies
∥∥∥∥∥

1

ρ
∇⊥
(

curl A − hex

ρ2 + 1
k2

)∥∥∥∥∥
L2

≤ C.

It then follows for all 1 ≤ p < 2,
∥∥∥∥∥∇
(

curl A − hex

ρ2 + 1
k2

)∥∥∥∥∥
L p

≤
∥∥∥∥∥

1

ρ
∇⊥
(

curl A − hex

ρ2 + 1
k2

)∥∥∥∥∥
L2

· ‖ρ‖
L

2p
2−p

≤ C.

Given h = hex on ∂
, we conclude
∥∥∥∥∥

curl A − hex

ρ2 + 1
k2

∥∥∥∥∥
L p

≤ C

∥∥∥∥∥∇
(

curl A − hex

ρ2 + 1
k2

)∥∥∥∥∥
L p

≤ C.
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By Sobolev embedding,
∥∥∥∥∥

curl A − hex

ρ2 + 1
k2

∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥
curl A − hex

ρ2 + 1
k2

∥∥∥∥∥
W 1,p

≤ C for ∀1 ≤ q < ∞.

Pick q > 2,

‖h − hex‖L2 ≤
∥∥∥∥∥

curl A − hex

ρ2 + 1
k2

∥∥∥∥∥
Lq

∥∥∥∥ρ2 + 1

k2

∥∥∥∥
L

2q
q−2

.

This implies

‖∇ A‖L2 ≤ ‖curl A − hex‖L2 + ‖hex‖L2 ≤ C

i.e., (u, A) ∈ H1 × H1 ⊂ H1 × W . Since (u, A) is a minimizer in H1 × W , therefore, a
minimizer in H1 × H1. Since |u| = 1 on ∂
, (u, A) ∈ V .
Step 2 Let (un, An) be a minimizing sequence for G (u, A) in V and (vn, Bn) are minimizers
of Gn (u, A) in V . Therefore,

G (un, An) ≥ Gn
(
un, An

) ≥ Gn
(
vn, Bn

)

and (vn, Bn) satisfies

− µ2

4

|curl Bn − hex |2(
ρ2

n + 1
n2

)2 u = ∇2
Bn

un + 1

ε2 un
(
1 − |un |2) (3 |un |2 − 1

)
(3.8)

jBn (vn) = µ2

4
∇⊥
(

curl Bn − hex

ρ2
n + 1

n2

)
(3.9)

for ρn = |vn |. By estimates from Lemma 2.2, we deduce (vn, Bn) is a bounded sequence in
H1 × H1. Subject to a subsequence, we can assume

(vn, Bn) ⇀ (u, A) in H1 × H1

and |v| = 1 on ∂
. In particular,

curl Bn − hex

ρ2
n + 1

n2

⇀
curl A − hex

ρ2 in L2.

It then follows from lower semicontinuity that

inf
V

G (u, A) = lim G (un, An) ≥ lim inf Gn
(
vn, Bn

) ≥ G (u, A) .

Therefore, (u, A) is a minimizer of Gcsh in V . Passing to the limit in (3.8) and (3.9), we find
that (u, A) satisfies the Euler–Lagrange equation (1.8)–(1.9).

Finally, we prove ∂u
∂ν

= 0 on ∂
. Since (u, A) is a minimizer of Gcsh in V and A · ν = 0
on ∂
, we have

∫

∂


∂u

∂ν
ϕ ds = 0 for all ϕ that |u + ϕ| = 1 on ∂
.

Choosing ϕ = −2u, this implies
∫
∂


∂u
∂ν

uds = 0. It then follows
∫

∂


∂u

∂ν
ϕ ds = 0 for all ϕ that |ϕ| = 1 on ∂
.
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From this, we conclude ∂u
∂ν

= 0 on ∂
. ��
3.2 Energy splitting

This section is devoted to the proof of Theorem 1.6. The proof is done in several steps.

3.2.1 Basic energy estimates

In this section, we present some basic energy estimates on a minimizer (u, A). Recall that,
for a suitable choice of gauge, div A = 0, and there is a function ξ ∈ H2 (
, R) such that
A = ∇⊥ξ = (−ξx2 , ξx1) with ξ = 0 on ∂
. Thus,

h = curlA = �ξ, (3.10)

and |∇Au|2 = |∇u|2 − 2(iu, ξx2 ux1 − ξx1 ux2) + |u|2 |A|2. We introduce ξ0 as the solution
of the following equation

⎧
⎪⎨
⎪⎩

−µ2
ε

4 �2ξ0 + �ξ0 = 0 in 
,

�ξ0 = 1 on ∂
,

ξ0 = 0 on ∂
.

(3.11)

We decompose ξ as

ξ = hexξ0 + ζ (3.12)

so that ζ = �ζ = 0 on ∂
. We have the following estimate on ξ0 and ξ .

Lemma 3.2
{

−µ2
ε

4 �ξ0 + ξ0 = −µ2
ε

4 in 


ξ0 = 0 on ∂

(3.13)

with

−µ2
ε

4
< ξ0 < 0 in 
,

0 < �ξ0 < 1 in 
,

|∇ξ0|∞ ≤ C.

Moreover, when µε −→ 0,

sup



|ξ0| = µ2
ε

4
(1 − o (1)) . (3.14)

Proof (3.13) Follows easily from (3.11). In addition, the maximum principle applied to (3.11)

yields that 0 < �ξ0 < 1 in 
 and then −µ2
ε

4 < ξ0 < 0 in 
.
In order to establish the gradient bound, we note‖�ξ0‖L p ≤ ‖1‖L p ≤ C p for all p < +∞.

Therefore, ‖ξ0‖W 2,p ≤ C and hence |∇ξ0|∞ ≤ C by Sobolev embedding once we fix p > 2.

Consider µ2

4 f (y) = ξ0(x) where y = 2
µ

x , then
{

−� f + f = −1 in 
ε

f = 0 on ∂
ε

(3.15)

123



28 D. Spirn, X. Yan

and 0 < � f < 1, −1 < f < 0, |∇ f | ≤ C
µε

. Since 
ε approaches infinity when µε −→ 0,
we claim f � −1 except near boundary. In fact, let B2R ⊂ 
, integrating (3.15) over Bt ,
then integrating t from R to 2R

2R∫

R

∫

Bt

( f + 1) =
2R∫

R

∫

∂ Bt

∂ f

∂ν
= c

∣∣∣∣∣∣∣

∫

S1

2R∫

R

t ft

(
teiθ
)

dtdθ

∣∣∣∣∣∣∣

≤ c

∣∣∣∣∣∣∣

∫

S1

[
2R f

(
2Reiθ

)
− R f

(
Reiθ

)]
dθ

∣∣∣∣∣∣∣
+ c

R

∣∣∣∣∣∣∣

∫

S1

2R∫

R

f
(

teiθ
)

tdtdθ

∣∣∣∣∣∣∣
≤ C R.

Since f + 1 > 0, it follows that R
∫

BR
( f + 1) ≤ ∫ 2R

R

∫
Bt

( f + 1) ≤ C R. This implies∫
BR

( f + 1) ≤ C , hence

Kε = ∣∣{x : x ∈ BR and f (x) > −1 + √
µε

}∣∣ ≤ C
1√
µε

.

Choosing R = µ
− 3

4
ε < µ−1

ε , then Kε|BR | −→ 0 asµε −→ 0. Therefore, min f (x) = −1+o (1)

and (3.14) follows. ��
Lemma 3.3 For (̃u, Ã) minimizing Gcsh in V , we have Gcsh (̃u, Ã) ≤ Cµ2

εh2
ex and

∫




∣∣∇ Ãũ
∣∣2 ≤ Cµ2

εh2
ex ,

∫




(
1 − |̃u|2)2 ≤ Cεµ2

εh2
ex , (3.16)

∥∥∇ ξ̃
∥∥

L∞(
)
≤ Chex

µε

+ Chex . (3.17)

Proof As (̃u, Ã) is minimizing, we have

Gcsh
(̃
u, Ã

) ≤ Gcsh (1, 0) = µ2
ε

8
h2

ex |
|

and
∫



|∇ Ãũ|2 ≤ Gcsh (̃u, Ã) ≤ Cµ2
εh2

ex . To prove (3.16), recall

1

2

∫




|∇ |̃u||2 + 1

ε2
|̃u|2 (1 − |̃u|2)2 ≤ Gcsh

(̃
u, Ã

) ≤ Cµ2
εh2

ex . (3.18)

By Cauchy–Schwartz,

1

2

∫




|∇ |̃u||2 + 1

ε2

(
1 − |̃u|2)2 |̃u|2 ≥ 1

ε

∫




|∇ |̃u|| · ∣∣1 − |̃u|2∣∣ |̃u|

≥ 1

4ε

∫




∣∣∣∇
((

1 − |̃u|2)2
)∣∣∣ . (3.19)

Since |̃u| = 1 on ∂
, (3.18) and (3.19) together with Sobolev embedding imply∫


(1 − |̃u|2)2 ≤ Cεµ2

εh2
ex . Finally, the gradient estimate on ξ̃ follows from Lemma 2.2. ��
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3.2.2 Splitting of energy

From now on, we assume hex ≤ C |log ε|
µ2

ε
. Let 
̃ = 
\ ∪i∈I Bi , where {Bi }i∈I is the family

of balls given by Proposition 2.13. We have the following identity.

Lemma 3.4

1

2

∫




|∇Au|2 =
∫




(
1

2

∣∣∣∇u − i∇⊥ζu
∣∣∣
2 + 1

2
h2

ex |∇ξ0|2 + hex∇ξ0 · ∇ζ

)

+2πhex

∑
i∈I

diξ0 (ai ) + o (1) .

Proof From (3.10) and (3.12),

|∇Au|2 =
∣∣∣∇u − i∇⊥ζu

∣∣∣
2 + h2

ex |u|2 |∇ξ0|2

+2
(
∇u − i∇⊥ζu,−ihex∇⊥ξ0u

)
.

Moreover,

∫




(
∇u − i∇⊥ζu,−ihex∇⊥ξ0u

)
=
∫




(
∇u,−ihex∇⊥ξ0u

)
+ hex

∫




|u|2 ∇ξ0 · ∇ζ

and

∣∣∣∣∣∣
hex

∫




(
1 − |u|2)∇ξ0 · ∇ζ

∣∣∣∣∣∣
≤ hex

⎛
⎝
∫




(
1 − |u|2)2

⎞
⎠

1
2

|∇ξ0|∞
⎛
⎝
∫




|∇ζ |2
⎞
⎠

1
2

≤ Chexε
1
2
|log ε|

µε

= o (1) ,

h2
ex

∫




(
1 − |u|2) |∇ξ0|2 ≤ h2

ex

⎛
⎝
∫




(
1 − |u|2)2

⎞
⎠

1
2

|∇ξ0|2∞

≤ Ch2
exε

1
2
|log ε|

µε

= o(1).

The proof is completed using Lemma 3.5. ��

Lemma 3.5 If α > 7 in Proposition 2.13,

∫




(
∇u,−ihex∇⊥ξ0u

)
= 2πhex

∑
i∈I

diξ0 (ai ) + o(1).

123



30 D. Spirn, X. Yan

Proof We follow a similar idea as in [20]. First for any 2(α−1)
α−4 < p < ∞,

∣∣∣∣∣∣∣

∫

∪Bi

(
∇u,−ihex∇⊥ξ0u

)
∣∣∣∣∣∣∣

≤ |∇ξ0|∞ hex

⎛
⎜⎝
∫

∪i Bi

|∇u|2
⎞
⎟⎠

1
2
⎛
⎜⎝
∫

∪i Bi

|u|2
⎞
⎟⎠

1
2

≤ C
1

µε

( |log ε|
µε

)2

‖u‖L p(
) (cardI )
1
2 − 1

p · (max ri )
1− 2

p

= C

( |log ε|
µε

)3− 2
p
( |log ε|

µε

)−α
(

1− 2
p

)
1

µ
2− 2

p
ε

= o (1) . (3.20)

Let 
̃ = 
\ ∪ Bi , v = u
|u| and integrating by parts, we get

∫


̃

(
∇u,−ihex∇⊥ξ0u

)
= hex

∫


̃

(
iu, (ξ0)x2

ux1 − (ξ0)x1
ux2

)

= hex

∫


̃

(iv, dv ∧ dξ0) + o (1)

=
∑
i∈I

hex

∫

∂ Bi

ξ0

(
iv,

∂v

∂τ

)
+ o(1). (3.21)

We claim that for any i ∈ J ={i ∈ I : Bi ⊂ 
},

hex

∫

∂ Bi

ξ0

(
iv,

∂v

∂τ

)
= 2πhex diξ0 (ai ) + o

((
µε

|log ε|
)2
)

. (3.22)

To prove this claim, let

Ui =
{

x ∈ Bi : |u| ≤ 1

4

}
.

Then Ui doesn’t intersect ∂ Bi and by Stokes’ Theorem
∣∣∣∣∣∣∣

∫

∂ Bi

(ξ0 − ξ0 (ai ))

(
iv,

∂v

∂τ

)
−
∫

∂Ui

(ξ0 − ξ0 (ai ))

(
iv,

∂v

∂τ

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

Bi \Ui

dξ0 ∧
(

iv,
∂v

∂τ

)
∣∣∣∣∣∣∣
≤ C |∇ξ0|∞ ri

⎛
⎜⎝
∫

Bi \Ui

|∇v|2
⎞
⎟⎠

1
2

≤ C

(
µε

|log ε|
)α 1

µε

|log ε|
µε

= C
1

|log ε|
(

µε

|log ε|
)α−2

.
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On the other hand, since |u| = 1
4 on ∂Ui ,

hex

∫

∂Ui

(ξ0 − ξ0 (ai ))

(
iv,

∂v

∂τ

)
= 16hex

∫

Ui

(dξ0 ∧ (iu, du) + (ξ0 − ξ0 (ai )) (idu, du)) .

Therefore, for 2(α−1)
α−6 < p < ∞,

∣∣∣∣∣∣∣
hex

∫

∂Ui

(ξ0 − ξ0 (ai ))

(
iv,

∂v

∂τ

)
∣∣∣∣∣∣∣

≤ 16

∣∣∣∣∣∣∣
hex

∫

Ui

dξ0 ∧ (iu, du)

∣∣∣∣∣∣∣
+ 16

∣∣∣∣∣∣∣
hex

∫

Ui

(ξ0 − ξ0 (ai )) (idu, du)

∣∣∣∣∣∣∣

≤ Chex |∇ξ0|∞
∫

Ui

|udu| + Chexri |∇ξ0|∞
∫

Ui

|∇u|2

≤ C
|log ε|

µ2
ε

⎛
⎜⎝
∫

Ui

|∇u|2
⎞
⎟⎠

1
2
⎛
⎜⎝
∫

Ui

∣∣u2
∣∣
⎞
⎟⎠

1
2

+ C
|log ε|

µ2
ε

(
µε

|log ε|
)α 1

µε

( |log ε|
µε

)2

≤ C
|log ε|

µ2
ε

|log ε|
µε

‖u‖L p(
) r
1− 2

p
i + C

(
µε

|log ε|
)α−5 1

|log ε|2 = o

((
µε

|log ε|
)2
)

.

We next deal with balls that intersect ∂
. We claim that for all i ∈ I\J ,

hex

∫

∂ Bi ∩


ξ0 (iv, dv) = o

((
µε

|log ε|
)2
)

. (3.23)

The proof is very similar to that of (3.22). Since ξ0 = 0 on ∂
, letting Ui = Bi ∩ {|u| ≤ 1
4 }

hex

∫

∂ Bi ∩


ξ0 (iv, dv) = 16hex

∫

Ui ∩


dξ0 ∧ (iu, du) + o

((
µε

|log ε|
)2
)

≤ Chex |∇ξ0|∞
∫

Ui

|udu| + o

((
µε

|log ε|
)2
)

≤ C

(
µε

|log ε|
)α
(

1− 2
p

)
−4+ 2

p 1

|log ε|2− 2
p

+ o

((
µε

|log ε|
)2
)

= o

((
µε

|log ε|
)2
)

for 2(α−1)
α−6 < p < ∞. Using (3.20)–(3.23), and the fact that card I ≤ C

( |log ε|
µε

)2
, the

conclusion of the lemma follows. ��
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Lemma 3.6 Let G0 = ∫



h2
ex
2 |∇ξ0|2 + µ2

ε

8 h2
ex |�ξ0 − 1|2. We have the following identity:

µ2
ε

8

∫




|h − hex |2 + 1

2

∫




h2
ex |∇ξ0|2 +

∫




hex∇ξ0 · ∇ζ = G0 + µ2
ε

8

∫




|�ζ |2 .

Proof The proof of this lemma is similar to the proof of Lemma 2.4 in [20]. ��

A direct corollary of the previous lemma is the following:

Lemma 3.7

µ2
ε

8

∫




|h − hex |2
|u|2 + 1

2

∫




h2
ex |∇ξ0|2 +

∫




hex∇ξ0 · ∇ζ

= G0 + µ2
ε

8

∫




|�ζ |2 + o (1) .

Proof We write

µ2
ε

8

∫




|h − hex |2
|u|2 = µ2

ε

8

∫




|h − hex |2 + µ2
ε

8

∫




|h − hex |2
|u|2

(
1 − |u|2) .

We can bound

µ2
ε

8

∫




|h − hex |2
|u|2

(
1 − |u|2) ≤ µ2

ε

8

∥∥∥∥
h − hex

|u|2
∥∥∥∥

2

L p

∥∥|u| (1 − |u|2)∥∥L2 ‖u‖Lq

with 1
p + 1

q = 1
2 . Using ‖ h−hex

|u|2 ‖L p ≤ C p

µ2
ε

√
Mε , ‖u‖Lq ≤ Cq , and ‖(1−|u|2)|u|‖L2 ≤ ε

√
Mε,

the conclusion then follows from Lemma 3.6. ��

Lemma 3.8

∫




∣∣∣∇u − iu∇⊥ζ

∣∣∣
2 ≥

∑
i∈I

∫

Bi

|∇u|2 + o (1) .

Proof

∫




∣∣∣∇u − iu∇⊥ζ

∣∣∣
2 ≥

∫

∪i∈I Bi

∣∣∣∇u − iu∇⊥ζ

∣∣∣
2

=
∫

∪i∈I Bi

|∇u|2 + |u|2
∣∣∣∇⊥ζ

∣∣∣
2 − 2

(
∇u, iu∇⊥ζ

)
.
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By Lemma 2.2, |∇ζ |∞ ≤ |A|L∞ + hex |ξ0|L∞ ≤ C |log ε|
µ3

ε
; therefore,

∣∣∣∣∣∣∣

∫

∪i∈I Bi

(
∇u, iu∇⊥ζ

)
∣∣∣∣∣∣∣
≤ |∇ζ |∞

⎛
⎜⎝
∫

∪i∈I Bi

|∇u|2
⎞
⎟⎠

1
2
⎛
⎜⎝
∫

∪i∈I Bi

|u|2
⎞
⎟⎠

1
2

≤ C
|log ε|

µ3
ε

|log ε|
µε

‖u‖L p(
) r
1− 2

p
i (cardI )

1
2 − 1

p

≤ C

∣∣∣∣
µε

log ε

∣∣∣∣
(α−1)

(
1− 2

p

)
−4+ 2

p 1

|log ε|3− 2
p

= o (1) ,

for p > 2α
α−5 , the conclusion follows. ��

From this lemma, we deduce that

1

2

∫




∣∣∣∇u − iu∇⊥ζ

∣∣∣
2 + 1

ε2
|u|2 (1 − |u|2)2

≥ 1

2

∑
i∈I

∫

Bi

|∇u|2 + 1

ε2
|u|2 (1 − |u|2)2 + o (1)

=
∑
i∈I

Ecsh (u, Bi ) , (3.24)

and the last term is bounded below by (2.39).

Proof of Theorem 1.6 We deduce from Lemmas 3.4, 3.6, 3.8 and (2.39), that

Gcsh (u, A) ≥ G0 + 2πhex

∑
i∈I

diξ0 (ai )

+π
∑
i∈I

|di |
(

|log ε| − O

(
log

∣∣∣∣
|log ε|

µε

∣∣∣∣
))

.

Since (u, A) is a global minimizer, Gcsh (u, A) ≤ G0, thus

π
∑
i∈I

|di |
(

|log ε| − O

(
log

∣∣∣∣
log ε

µε

∣∣∣∣
))

≤ −2πhex

∑
i∈I

diξ0 (ai )

≤ 2πhex

∑
i∈I

|di | max |ξ0| .

Assume µε � e−|log ε|α for 0 < α < 1, then |log µε| = o (|log ε|). If
∑

i∈I |di | �= 0, we
deduce that

hex ≥ 1

2 max |ξ0|
(

|log ε| − O

(
log

∣∣∣∣
log ε

µε

∣∣∣∣
))

:= hc1 ≈ 2 |log ε|
µ2

ε

.

Consequently, if hex < hc1 , we must have di = 0 for each i ∈ I . Then from Lemmas 3.4,
3.6, 3.8 and (3.24) that

G0 ≥ Gcsh (u, A) ≥ G0 +
∑
i∈I

Ecsh (u, Bi ) + o (1) .
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Therefore, ∑
i∈I

Ecsh (u, Bi ) ≤ o (1) . (3.25)

We conclude that |u| ≥ 1
4 in Bi . Otherwise since |u| ≥ 1

2 on ∂ Bi , if |u (x0)| < 1
4 for some

x0 ∈ Bi . Then there is point x1 ∈ Bi such that |u (x1)| = 3
8 by continuity of u. In particular,

we can find a point Q ∈ ∂ Bi such that dist (x1, ∂ Bi ) = dist (x1, Q). From this,

1

2
− 3

8
≤ |u (Q)| − |u (x1)| ≤ |∇u|∞ |x1 − Q| ≤ C0

ε
|x1 − Q| .

Therefore, B 1
8C0

ε (x1) ⊂ Bi and a similar argument as in Lemma 2.6 implies there is a

constant γ0 that

Ecsh (u, Bi ) ≥ Ecsh

(
u, B 1

8C0
ε (x1)

)
≥ γ0,

which contradicts (3.25).
We now finish the proof of the critical field strength. We show that if hex >

2|log ε|
µ2

ε
then

there must be a vortex. We prove this by contradiction. Let (uε, Aε) be a minimizer with∑
j∈J

∣∣d j
∣∣ = 0, then from argument above, we have |u| ≥ 1

4 . We claim Gcsh (uε, Aε) ≥
Gcsh

(
1, hex∇⊥ξ0

)+ o (1).
We write Aε = hex∇⊥ξ0 +∇⊥ζ . From Lemma 2.2 and energy splitting Lemmas 3.4, 3.7,

we have

Gcsh (uε, Aε) ≥ 1

2

∫




∣∣∣∇uε − iuε∇⊥ζ

∣∣∣
2 + 1

ε2
|uε|2

(
1 − |uε|2

)2 + G0

+2πhex

∑
i∈I

diξ0 (ai ) + µ2
ε

8

∫




|�ζ |2 + o (1) .

Since

1

2

∫




∣∣∣∇uε − iuε∇⊥ζ

∣∣∣
2 = 1

2

∫




|∇uε|2 − 2 j (uε) · ∇⊥ζ + |∇ζ |2 + 1

2

∫




|∇ζ |2 (|uε|2 − 1
)

= 1

2

∫




|∇uε|2 − 2 j (uε) · ∇⊥ζ + |∇ζ |2 + o (1)

and
∑

j∈J

∣∣d j
∣∣ = 0, by a similar argument as in proof of Lemma 3.5, we conclude

∫




j (uε) · ∇⊥ζ = o (1) .

Therefore,

Gcsh (uε, Aε) ≥ Ecsh (uε) + G0 + µ2
ε

8

∫




|�ζ |2 + 1

2

∫




|∇ζ |2 + o (1) .

Since (uε, Aε) is a minimizer, we have Gcsh (uε, Aε) ≤ G0; therefore, Ecsh (uε)+
µ2

ε

8

∫



|�ζ |2 + 1
2

∫



|∇ζ |2 = o (1). Therefore,

Gcsh (uε, Aε) ≥ G0 + o (1) .
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We now construct a sequence of functions (u, A) which have lower energy than Meissner

energy when hex >
2|log ε|

µ2
ε

. Fix point a ∈ 
 such that |ξ0 (a)| = sup
 |ξ0| = µ2
ε

4 (1 − o (1)).

Let A0 = hex∇⊥ξ0 + ∇⊥ζ , where ξ0 is defined by (3.11) and ζ satisfies

− µ2
ε

4
�2ζ + �ζ = 2πδε in 
 (3.26)

�ζ = 0 on ∂


where δε is an approximation of a δ-distribution given by

δε (x) =
{

1
πε2 |x − a| < ε

0 else.

Define u = ρeiϕ , where ρ is defined by

ρ (x) =
⎧
⎨
⎩

0 |x − a| < ε
|x−a|

ε
− 1 ε < |x − a| < 2ε

1 |x − a| > 2ε

and ϕ is given by ∇ϕ = A0 − µ2
ε

4 ∇⊥ curl A0. We write h = curl A0. Then for any BR ⊃ {a},∫
∂ BR

∂τ ϕ = ∫BR
−µ2

ε

4 �h +h = 2π . A direct calculation shows Ecsh (u) ≤ π log dist(a,∂
)
ε

+
C ≤ π |log ε| + C . We define A as the solution of

curlA = ρ (curlA0 − hex ) + hex in 


divA = 0 in 


A · ν = 0 on ∂
.

Then

Gcsh (u, A) = 1

2

∫




ρ2 |∇ϕ − A|2 + |∇ρ|2 + 1

2

∫




µ2
ε

4

|h − hex |2
ρ2 + 1

ε2 ρ2 (1 − ρ2)2

= Ecsh (u) −
∫




j (u) · A + 1

2

∫




ρ2 |A|2 + µ2
ε

4
|curlA0 − hex |2

= Ecsh (u) −
∫




j (u) · A0 + 1

2

∫




|A0|2 + µ2
ε

4
|curlA0 − hex |2 + o (1)

= Ecsh (u) −
∫




j (u) · ∇⊥ (hexξ0 + ζ )

+G0 + µ2
ε

8

∫




|�ζ |2 + 1

2

∫




|∇ζ |2 + o (1)

≤ π |log ε| + C + G0 − 2πhex
µ2

ε

4

+µ2
ε

8

∫




|�ζ |2 + 1

2

∫




|∇ζ |2 + 2πζ (a) .
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The last step follows from similar argument as in Lemmas 3.5 and 3.7. Multiplying (3.26)

by ζ and integrating over 
 shows µ2
ε

4

∫



|�ζ |2 + ∫



|∇ζ |2 = −2πζ (a); hence,

µ2
ε

8

∫




|�ζ |2 + 1

2

∫




|∇ζ |2 + 2πζ (a) < 0

and we have

Gcsh (u, A) ≤ G0 + π |log ε| − 2πhex
µ2

ε

4
+ C.

When hex >
2|log ε|

µ2
ε

, there exists δ > 0 such that

π |log ε| − 2πhex
µ2

ε

4
+ C < C − δ |log ε| < −|C |

2
.

Thus

Gcsh (u, A) < G0 − |C |
2

≤ Gcsh (uε, Aε) .
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